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PREFACE 

 
Any signal can be decomposed into different bases. The most well-

known and familiar decomposition of a signal by sine and cosine is called 
harmonic (frequency) analysis. When the signal is decomposed by 
harmonic functions, the basis sequences are nonzero at all points and the 
expansion coefficients are proportional to the amplitudes of the sines and 
cosines. In this sense the basis is "global". The basis of sinuses and cosines 
is best for frequency analysis of signals, that is, for the accurate 
determination of frequency, and worst for determining time. If the basis 
sequences differ from zero only strictly at one point and the expansion 
coefficients are equal to the values of the original signal, then this expansion 
is "strictly local". Such a basis consists of functions in which all points are 
zero except for one equal to the Dirac delta function, and for each 
subsequent delta function is shifted by one count. Such a basis is best for 
the time analysis of signals, that is, for the exact determination of time, and 
worst for the determination of frequency. In the wavelet decomposition of 
a signal, the basis is "local" in the sense that the coefficients of the 
decomposition are nonzero at several points in the basis sequence. The 
wavelet basis occupies an intermediate position between the strictly local 
basis of delta functions and the global Fourier basis. The basis functions, 
called wavelets, have the property of time-frequency localization, and the 
analysis itself is called time-frequency. In classical Fourier analysis, 
frequencies are well distinguished, but there is no information about the 
time of occurrence of these frequencies in the case of a non-stationary 
signal. The basis of the Dirac delta function is very good at highlighting the 
time of appearance of the signal, but it does not highlight the frequency, that 
is, it has a uniform frequency spectrum. During the wavelet transform, both 
the frequencies and the time of occurrence of these frequencies are 
distinguished. Wavelet analysis is an effective tool for studying the local 
properties of signals for non-stationary signals with rapidly changing local 
frequencies. The frequency analog for the wavelet transform is the inverse 
of the scale factor. In order to cover all possible time positions of the signal 
with the basis functions, it is necessary to shift the basis functions along the 
time axis, that is, it is necessary to calculate the correlation of the signal 
with the wavelet, and this requires a lot of time. For real-time signal 
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processing, algorithms for fast numerical calculation of the forward and 
inverse continuous wavelet transform are required, so the development of 
such algorithms is relevant. It is only possible to develop fast algorithms for 
the continuous wavelet transform using the fast Fourier transform. In this 
regard, in the monograph, in the first chapter, in addition to the Proni 
method, the wavelet transform and the Fourier transform are considered. In 
the second chapter, the principles and algorithms for calculating the forward 
and inverse continuous wavelet transform in the frequency domain using 
the fast Fourier transform, an algorithm for multiple-scale analysis of a 
signal in the frequency domain are considered. The third chapter indroduces 
application of algorithms for numerical calculation of fast continuous 
wavelet transform for speech recognition in Russian and the fourth chapter 
provides examples of using these algorithms to compress one-and two-
dimensional signals, determines the average size of micro-and macro-
objects in an image, and compares the results of multi-scale image analysis 
in the frequency domain with the results of multi-scale analysis in the 
MatLab computer mathematics system. 

In case of a deeper interest, we refer the readers to references at the end 
of a book, for easier, more accurate and faster orientation in the given topic. 
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INTRODUCTION 

 
Currently, various types of transformations are used to process stationary 

and non-stationary signals. Among them, the most commonly used are the 

Fourier transform (FT), the Proni transform, and the Wavelet Transform 

(WT). The FT decomposes a complex signal into many simple signals and 

determines the proportion of each simple signal in this complex signal, that 

is, it performs a spectral analysis. In stationary signals, the signal spectrum 

does not change over time, and FT is traditionally used to study such signals. 

The Proni transform and the WT are generalizations of classical spectral 

analysis, that is, the signal is also decomposed into simple components, but 

in different bases. For the study of non-stationary signals, the Proni 

transform and WT are better suited, where the basis functions for the 

decomposition are not infinite sines and cosines, as in the case of FT, but 

functions localized in space or in time. These transformations make it easier 

to extract information from the signal, identify features, and track the 

change in the frequency composition of the signal over time. Until the 

1950s, signal processing in radio engineering was usually performed using 

analog devices. The use of digital signal processing was promoted by the 

development of large integrated circuits, the associated reduction in the 

cost, and size of digital devices, increasing their speed, and the creation of 

new efficient algorithms for numerical calculation of FT, Proni and wavelet 

decomposition. For the analysis of signals with the use of electronic 

computers, discrete analogs of these transformations are used. In turn, 

continuous signals from the analog form are converted into a discrete form, 

quantized, and entered into the computer in the form of digits. Digital signal 

processing technologies are increasingly being used in various fields of 

science and technology. The analog of FT in digital processing is the 

discrete Fourier transform (DFT) and its variant - the fast Fourier transform 

(FFT). The widespread use of the Proni transform for short attenuated 

signals in seismic exploration became possible with the advent of more 

powerful computers, which contributed to a better spectral resolution of 

these signals. A discretized version of the continuous (integral) WT and 

discrete WT (DWT) is used for signal processing on a computer. The DWT 

is not a discretized version of the continuous wavelet transform. If the 

continuous WT uses wavelet shifts with any arbitrarily small step, then the 
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DWT is based on the use of integer shifts and setting the scales of the power 

of two. Each transformation has its own advantages and disadvantages, and 

it is used for the spectral analysis of one-and two-dimensional signals. 
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1 CLASSICAL AND GENERALIZED SPECTRAL ANALYSIS OF 

SIGNALS 

 
1.1 Fourier transform 

 
Methods for analyzing signals in the frequency domain are widely used 

since they allow us to effectively use the properties of signals based on the 
mathematical apparatus of the FT [3, 4, 58, 61]. If the theory of signal 
processing was limited to the time approach, it would never have received 
such rapid development. The theory of FT since the 1920s has become a 
powerful theoretical basis for the development of radio engineering, radio 
electronics, electrical engineering and other fields of science and 
technology. The feasibility of switching to the frequency domain is also 
associated with the search for a variety of DFT-FFT, which reduces the 
signal processing time by many times with a large sample [4, 25, 58, 64]. 
To move from classical spectral analysis to generalized spectral analysis of 
FT, it is necessary to know the theory of functional analysis, the Laplace 
transform, and the 𝑧-transform as a generalization of the discrete Fourier 
transform. These sections are not included in the monograph. 

If a function 𝑓(𝑡) integrable with a square has a period of 2 and is 
piecewise monotone and bounded in the interval [– , ], then its Fourier 
series converges to the function 𝑓(𝑡) at each point of continuity 
 

𝑓(𝑡) =
𝑎0

2
+ ∑(𝑎𝑛 cos 𝑛𝑡 + 𝑏𝑛 sin 𝑛𝑡)

∞

𝑛=1

 

 
and to the value 
 

∫(𝑡) =
𝑓(𝑡 + 0) + 𝑓(𝑡 − 0)

2
 

 
unevenly at the points of discontinuity (Gibbs phenomenon) [3, 58, 61]. 

The constants 𝑎𝑛 and 𝑏𝑛 are called Fourier coefficients and are 
determined by the Euler-Fourier formulas [3, 14, 61] 
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𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑡)

𝜋

−𝜋

cos 𝑛𝑡 𝑑𝑡 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑡)

𝜋

−𝜋

sin 𝑛𝑡 𝑑𝑡 

𝑛 = 1,2,3…  
 

Both in the theory of Fourier series itself and in other areas of analysis, 
the closure equation finds numerous applications [61] 
 

𝑎0
2

2
+ ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑚=1

=
1

𝜋
∫ 𝑓2(𝑡)

𝜋

−𝜋

𝑑𝑡 

 
For functions integrable with a square, this equation was first proved by A. 
M. Lyapunov [61]. 

So, if two functions 𝑓(𝑡) and 𝑦(𝑡) are given, integrable in the interval 
[– , ] with a square, having Fourier coefficients 𝑎𝑛, 𝑏𝑛 and 𝛼𝑛, 𝛽𝑛, 
respectively, the generalized closure equation applies [61] 
 

𝑎0𝛼0

2
+ ∑(𝑎𝑛𝛼𝑛 + 𝑏𝑛𝛽𝑛)

∞

𝑚=1

=
1

𝜋
∫ 𝑓(𝑡)

𝜋

−𝜋

𝑦(𝑡)𝑑𝑡 

 
These relations are called Parseval’s formulas [61]. 

The function 𝑓(𝑡) can be defined in any interval: in a very wide range of 
cases, a function arbitrarily defined in an arbitrary interval turns out to be 
decomposable into a trigonometric series, i.e. the function is represented by 
a single analytical expression – a trigonometric series – in the entire domain 
of the function definition. The apparatus of trigonometric series turns out to 
be a universal tool for "gluing" functions, finally blurring the line between 
functions that allow a single analytical expression in the entire domain of 
definition and functions defined using several analytical expressions [3, 61]. 

The complex form of writing the Fourier series of the function 𝑓(𝑡) with 
the period 𝑇 is often used 
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𝑓(𝑡) = ∑ 𝑐𝑛𝑒𝑖
2𝜋𝑛
𝑇

𝑡

∞

𝑛=−∞

 

                              𝑐𝑛 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖

2𝜋𝑛

𝑇
𝑡

𝑇

2

−
𝑇

2

𝑑𝑡, 𝑛 = 1,2,3…                    (1.1) 

 
where the cosines and sinuses are replaced by Euler's formulas. The Fourier 
series of a periodic function consists of terms containing harmonic functions 
with discretely varying frequencies 𝜈0 =

1

𝑇
, 2𝜈0, 3𝜈0, …, , i.e. the spectrum 

of the periodic function is linear [3, 56, 58, 61]. 
In nature, not all phenomena are periodic. Let us now consider the 

question of decomposition into the spectrum of non-periodic processes. Let 
there be a non-periodic absolutely integrable function 𝑓(𝑡). Such a function 
can be represented as periodic, reflecting a process with an infinitely large 
period. Denote 𝑛

𝑇
 by 𝜈, replace temporarily 𝑡 with 𝛼 in formula (1.1), and 

substitute in the Fourier series 
 

𝑓(𝑡) = ∑

[
 
 
 
 

∫ 𝑓(𝛼)𝑒−𝑖2𝜋𝜈𝛼

𝑇
2

−
𝑇
2

𝑑𝛼

]
 
 
 
 

𝑒𝑖2𝜋𝜈𝑡

∞

−∞

Δ𝜈 

 
Changing the frequency 
 

Δ𝜈 =
𝑛 + 1

𝑇
−

𝑛

𝑇
=

1

𝑇
 

 
When the period 𝑇 tends to infinity, Δ𝜈 tends to zero. Then, as proved in 

mathematical manuals [3, 14, 27, 56], the sum turns into an integral 
 

𝑓(𝑡) = ∫ [ ∫ 𝑓(𝛼)𝑒−𝑖2𝜋𝜈𝛼

∞

−∞

𝑑𝛼]

∞

−∞

∑

[
 
 
 
 

∫ 𝑓(𝛼)𝑒−𝑖2𝜋𝜈𝛼

𝑇
2

−
𝑇
2

𝑑𝛼

]
 
 
 
 

𝑒𝑖2𝜋𝜈𝑡

∞

−∞

Δ𝜈 
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that is, for a non-periodic function, the Fourier series turns into the Fourier 
integral. In contrast to the Fourier series, in the Fourier integral, the 
frequencies change continuously, so we have a continuous spectrum [3, 14, 
27, 56, 61]. 

We write the transformation of the function 𝑓(𝑡) in the form 
 
                                     𝑓(𝑡) = ∫ 𝐹(𝜈)

∞

−∞
𝑒𝑖2𝜋𝜈𝑡𝑑𝜈                              (1.2) 

where 
 

𝐹(𝜈) = ∫ 𝑓(𝛼)𝑒−𝑖2𝜋𝜈𝛼

∞

−∞

𝑑𝛼 

 
Returning to the previous notation, i.e. replacing 𝛼 with 𝑡, we get 
 
                                     𝐹(𝜈) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝜈𝑡∞

−∞
𝑑𝑡                              (1.3) 

 
The function (1.3) is called the frequency spectrum or spectral density of 
the signal (function) 𝑓(𝑡). Expressions (1.3) and (1.2) are called the forward 
and inverse 𝐹𝑇 of the signal 𝑓(𝑡), respectively. At break points 
 

𝑓(𝑡) =
𝑓(𝑡 + 0) + 𝑓(𝑡 − 0)

2
 

 
Thus, the signal can be described both in the time domain and in the 
frequency domain. Both representations correspond to each other 
unambiguously 𝑓(𝑡) ↔  𝐹(𝜈). 

The basic properties of the Fourier transform can be summarized as 
follows. Denote the 𝑊𝑇 of the function 𝑓(𝑡)𝐹(𝜈) ↔ 𝐹𝐹{𝑓(𝑡)}. 
 

1. The linearity property 
 

𝐹𝐹{𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡)} ↔ 𝑎𝐹1(𝜈) + 𝑏𝐹2(𝜈) 
 
for the functions 𝑓1(𝑡) and 𝑓2(𝑡) and any constants 𝑎 and 𝑏. 



Chapter 1                   CLASSICAL AND GENERALIZED SPECTRAL ANALYSIS... 

 

 

      char 

 
 
 
 

13 

2. Shift theorem 
 

𝐹𝐹{𝑓(𝑡 − 𝜉)} ↔ exp(−𝑖2𝜋𝜈𝜉)𝐹(𝜈) 
 
The shift of the signal in the region of the independent variable 
causes a phase change proportional to the frequency value of each 
spectral component of the signal. 

 
3. Re-performing the Fourier transform 

 
𝐹𝐹{𝐹(𝜈)} ↔ 𝑓(−𝑡) 

 
restores the original signal with the sign inversion of the independent 
variable. 

 
4. The derivative theorem 

 
If 𝐹𝐹{𝑓(𝑡)} ↔ 𝐹(𝜈) then 𝐹𝐹{𝑑𝑛𝑓(𝑡)/𝑑𝑡𝑛} ↔ (𝑖2𝜋𝜈)𝑛𝐹(𝜈) 

 
5. The properties of parity and odd. 

 
If 𝐹(𝜈) = 𝐹𝑐(𝜈) − 𝑖𝐹𝑠(𝜈) in the case when 𝑓(𝑡) is an even function, 
𝐹(𝜈) = 𝐹𝑐(𝜈) is an even function; if 𝑓(𝑡) is odd 𝐹(𝜈) = 𝐹𝑠(𝜈) is an 
odd function. 
 

6. Similarity property 
 

𝐹𝐹{𝑓(𝑎𝑡)} ↔ (1/|𝑎|)𝐹(𝜈/𝑎) 
 
where 𝑎 is a constant. 
When a signal is compressed by a factor of 𝑎 (𝑎 >  1) on the time 
axis, its spectrum will expand by the same factor on the frequency 
axis, and the spectral density modulus will decrease by a factor of 𝑎. 
When the signal is stretched in time (𝑎 <  1), its frequency spectrum 
is compressed and the spectral density modulus increases. 
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7. Energy conservation: 
 

∫ 𝑓2(𝑡)

∞

−∞

𝑑𝑡 = ∫|𝐹(𝜈)|2
∞

−∞

𝑑𝜈 

 
(Parseval's equality) 

 
1.1.1 Discrete Fourier transform 
 

A discrete signal 𝑓(𝑡𝑘) = 𝑓𝑘 can be obtained from a continuous 𝑓(𝑡) by 
taking samples at certain moments 𝑡𝑘. The time interval between two 
adjacent samples is called the sampling step 𝑇𝑑. To convert a signal into a 
digital form, in addition to sampling, it is also quantized by level. 

The sampling process can be considered as the multiplication of a 
continuous signal 𝑓(𝑡) by a periodic sequence of delta functions [58, 64] 
 

𝑠𝑑(𝑡) = ∑ 𝛿

∞

𝑘=−∞

(𝑡 − 𝑘𝑇𝑑) 

 
The resulting signal is called the lattice function 𝑓∗(𝑡) (hereafter, the 
symbol ∗ does not mean the complex conjugation operation) 
 

𝑓∗(𝑡) = 𝑓(𝑡)𝑠𝑑(𝑡) = ∑ 𝛿

∞

𝑘=−∞

(𝑡 − 𝑘𝑇𝑑) 

 
If the continuous signal 𝑓(𝑡) has a bounded spectrum 𝐹(𝜈), then the 
sampled signal 𝑓∗(𝑡) has a spectrum 

𝐹∗(𝜈) =
1

𝑇𝑑
∑ 𝐹

∞

𝑘=−∞

(𝜈 − 𝑘
1

𝑇𝑑
) 

 
That is, the spectrum of a discrete signal is the sum of shifted copies of 

the spectrum of a continuous signal. The copies are located on the frequency 
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axis at the same 𝜈𝑑 =
1

𝑇𝑑
 intervals equal to the sampling frequency. If the 

sampling frequency satisfies the conditions of Kotelnikov's theorem, i.e. 
𝜈𝑑 > 2𝜈𝑚, where 𝜈𝑚 is the maximum frequency of a continuous signal 
𝑓(𝑡), then the summed copies do not overlap. Then it is possible to restore 
the original signal and determine the spectrum of the analog signal 𝑓(𝑡) 
from the set of its samples. Otherwise (𝜈𝑑 < 2𝜈𝑚), due to the effect of 
overlapping copies of the spectrum (frequency mixing), the selection of the 
spectrum 𝐹(𝑡) from the spectrum 𝐹∗(𝜈), as well as the unambiguous 
determination of the signal, becomes impossible. 

Let's get a set of frequency samples from discrete samples of the signal. 
Let there be a periodic discrete signal given on the segment [0, 𝑇] in the 
form [58, 64] 
 

𝑓∗(𝑡) = ∑ 𝑓𝑘

𝑁−1

𝑘=0

𝛿(𝑡 − 𝑘𝑇𝑑) 

 
where 𝑇 = 𝑁𝑇𝑑, 𝑁 is the number of discrete values per period. Let's 
represent this signal as a Fourier series with a period 𝑇: 
 

𝑓∗(𝑡) = ∑ 𝑐𝑛

∞

𝑛=−∞

𝑒𝑖
2𝜋𝑛
𝑇

𝑡 

 
Find the coefficients of the series 
 

𝑐𝑛 =
1

𝑇
∫𝑓∗(𝑡)

𝑇

0

𝑒−𝑖
2𝜋𝑛
𝑇

𝑡 =
1

𝑇
∫ [∑ 𝑓𝑘𝛿(𝑡 − 𝑘𝑇𝑑)

𝑁−1

𝑘=0

]

𝑇

0

𝑒−𝑖
2𝜋𝑛
𝑇

𝑡 

 
Using the filtering property of the delta function, we get 
 

                𝑐𝑛 =
1

𝑇
∑ 𝑓(𝑘)𝑁−1

𝑘=0 𝑒−𝑖
2𝜋𝑛𝑘𝑇𝑑

𝑇 =
1

𝑁𝑇𝑑
∑ 𝑓(𝑘)𝑁−1

𝑘=0 𝑒−𝑖
2𝜋𝑛𝑘

𝑁              (1.4) 
 
The expression included in equality (1.4) 



APPLICATION OF CONTINUOUS FAST WAVELET TRANSFORM... 
 
 
 
 

16 

𝐹(𝑛) =
1

𝑁
∑ 𝑓(𝑘)

𝑁−1

𝑘=0

𝑒−𝑖
2𝜋𝑛𝑘

𝑁  

 
is called the DFT of a sequence of counts {𝑓(𝑘)}. 
 

Denote by 𝑊𝑁 = 𝑒−𝑖
2𝜋

𝑁  a quantity called the transformation kernel. Then 
the DFT formula takes the form 
 
                                      𝐹(𝑛) =

1

𝑁
∑ 𝑓𝑁−1

𝑘=0 (𝑘)𝑊𝑁
𝑛𝑘                                          (1.5) 

 
The formula for the inverse discrete Fourier transform (IDFT) is written 

as 
 
                                      𝑓(𝑘) = ∑ 𝐹𝑁−1

𝑘=0 (𝑛)𝑊𝑁
−𝑛𝑘                                           (1.6) 

 
In matrix form, the DFT has the form [86] 
 

𝐹 = 𝑁−1𝑊𝑓 
 
where 𝑊 is the matrix of the basis functions 
 

𝑊 =

(

  
 

𝑊𝑁
0 𝑊𝑁

0 𝑊𝑁
0

𝑊𝑁
0 𝑊𝑁

1 𝑊𝑁
2

𝑊𝑁
0

…
𝑊𝑁

0

𝑊𝑁
2

…
𝑊𝑁

𝑁−1

𝑊𝑁
4

…

𝑊𝑁
2(𝑁−1)

…
……
…
…

𝑊𝑁
0

    𝑊𝑁
𝑁−1

        𝑊𝑁
2(𝑁−1)

…

        𝑊𝑁
2(𝑁−1)

)

  
 

 

 
The rows of the matrix 𝑊 are pairwise orthogonal, and when each row 

is divided by √𝑁, they become orthonormal. The IDFT matrix is obtained 
from the matrix 𝑊 by replacing all elements with complex conjugates and 
then transposing. The elements of the matrix 𝑊𝑁

𝑘 and 𝑊𝑁
𝑙  have the same 

values if the numbers 𝑘 and 𝑙 have the same residuals when divided by 𝑁, 
i.e. if 𝑘 =  𝑙 (mod 𝑁). For example 
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𝑊𝑁
0 = 𝑊𝑁

𝑁 = 1 
𝑊16

1 = 𝑊16
17 = 0,9238 − 𝑖 0,3826 

 
The formula (1.5) is, up to a scale factor, a discrete approximation of the 

transformation (1.1), in which the function 𝑓(𝑡) is replaced by a step 
function 𝑓(𝑘)  =  𝑓(𝑡𝑘) within the length of the sampling element, where 
𝑡𝑘 = 𝑘𝑇𝑑, i.e. the integral is replaced by a finite sum. Expression (1.5) is an 
approximation, the quality of which improves with an increase in 𝑁 and a 
corresponding decrease in the sampling step 𝑇𝑑. For the DFT, all the 
properties given for the FT are satisfied. 
 
1.1.2 Fast Fourier transform 
 

Consider the DFT 𝐹(𝑛) of a sequence of length 𝑁 = 2𝑚  samples, where 
𝑚 is a positive integer. In this case, (1.5) can be reduced to the 
transformation of two (𝑁/2)-point sequences with even 𝑓(2𝑝) and odd 
𝑓(2𝑝 + 1) numbers [58, 64] 
 

𝐹(𝑛) = ∑ 𝑓(2𝑝)

𝑁
2
−1

𝑝=0

𝑊𝑁
𝑛2𝑝 + ∑ 𝑓(2𝑝 + 1)

𝑁
2
−1

𝑝=0

𝑊𝑁
𝑛(2𝑝+1) 

 

Taking into account the equality of 𝑊𝑁

𝑁

2 = −1, we get 
 

𝐹 (𝑛 +
𝑁

2
) = ∑ 𝑓(2𝑝)

𝑁
2
−1

𝑝=0

𝑊𝑁
𝑛2𝑝 − ∑ 𝑓(2𝑝 + 1)

𝑁
2
−1

𝑝=0

𝑊𝑁
𝑛(2𝑝+1) 

 
Since 

𝑊𝑁
2 = 𝑊𝑁

2
 

                      𝐹(𝑛) = ∑ 𝑓0

𝑁

2
−1

𝑝=0
(𝑝)𝑊𝑁

2

𝑛𝑝
+ 𝑊𝑁

𝑛 ∑ 𝑓1

𝑁

2
−1

𝑝=0
(𝑝)𝑊𝑁

2

𝑛𝑝               (1.7) 
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𝐹 (𝑛 +
𝑁

2
) = ∑ 𝑓0

𝑁

2
−1

𝑝=0
(𝑝)𝑊𝑁

2

𝑛𝑝
− 𝑊𝑁

𝑛 ∑ 𝑓1

𝑁

2
−1

𝑝=0
(𝑝)𝑊𝑁

2

𝑛𝑝  

 
where 𝑓0(𝑝) is an even sequence, 𝑓1(𝑝) is an odd sequence, 𝑛 =

 0, 1, … ,
𝑁

2
 –  1. 

Hence, the original 𝑁-point transformation reduces to two (𝑁

2
)- point 

transformations, 𝑁 additions and 𝑁
2
 multiplications by 𝑊𝑁

𝑛. Next, we can 

replace (𝑁

2
)- point transformations with (𝑁

4
)- point transformations, etc. 

This substitution is carried out until 𝑁

2
 -  sequences of two elements are 

formed. As a result, the elements of the original sequence are rearranged 
according to the rule of binary-inverse permutation according to the new 
number (index). The index corresponds to the reflection ("mirror" 
reflection) of the binary code of the element number in the original 
sequence. 

It should be noted that data processing is constructed as a recursive 
procedure. As a result, the DFT is reduced to 𝑚 = log2 𝑁 steps, at each of 
which 2𝑘 transformations on 2𝑚−𝑘 points are performed as 2𝑘+1 
transformations on 2𝑚−𝑘−1 points for 𝑁 additions and 𝑁

2
 multiplications. 

The basic operation at the 𝑚-th step is the so-called "butterfly" (formula 
(1.7)). Therefore, the number of computational operations for multiplying 
complex numbers 𝑀 and for adding complex numbers 𝐴 is equal [4, 64] 

 
                                              𝑀 = (

𝑁

2
) log2 𝑁                                        (1.8) 

                                                𝐴 = 𝑁 log2 𝑁                                          (1.9) 
 

The algorithm under consideration is called the Cooley-Tukey algorithm, 
also called the time-thinning algorithm. For efficient construction of the 
time-thinning FFT algorithm, the samples of the input sequence should be 
arranged in binary-inverse order. Then the output sequence will be linear. 

The original sequence of 𝑁 = 2𝑚 points can be divided into two 
sequences in a different way, namely, the first 𝑁

2
 samples and the last 𝑁

2
 

samples. This partitioning is the basis of the Sandy – Tukey algorithm, also 
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called the frequency-thinning algorithm. In this case, the original sequence 
is written in linear order, and the frequency sequence is obtained in binary-
inverse order. In order to rearrange the sequence in linear order, it is 
necessary to rearrange the elements with binary-inverse numbers after the 
transformation. In this case, the DFT is carried out in the form of calculating 
two (

𝑁

2
)-point transformations for 𝑁 addition operations and 𝑁

2
  

multiplication operations of complex numbers. Since the transformations 
considered can also be calculated recursively, the total number of operations 
is determined by the formulas (1.8, 1.9). The number of computational 
operations is significantly smaller compared to the usual DFT, which 
requires 𝑁2 operations of multiplying complex numbers. Therefore, the 
algorithms discussed above are called FFT algorithms [4, 25, 58, 64]. 

The FFT algorithm can be interpreted as a representation of the DFT 
matrix of (1.5) in the form of a work sparsely populated (i.e. consisting 
mainly of zero elements) of the matrix: 
 

𝑊 = 𝑊𝑛𝑊𝑛−1𝑊𝑛−2 …𝑊1 
 
where each matrix 𝑊𝑚 corresponds to 𝑚-th step of the algorithm the FFT 
and contains in each row, only two non-zero element 1 and 𝑊𝑀

𝑘, 𝑘 =
0,1, … , 2𝑚−1 − 1. The representation of the DFT matrix as a product of 
weakly filled matrices is called factorization [58, 64]. 

If the length of the sequence is determined by a prime number that cannot 
be decomposed into mutually prime factors, then a different approach is 
required, which consists of switching to calculations in the system of 
residual classes, which can significantly reduce the number of 
multiplication operations. The most well-known algorithm of this type is 
the GRAPE algorithm (named after the author Sh. Grapes, USA). The 
GRAPE algorithm provides DFT calculation almost an order of magnitude 
faster (especially for real data sequences) than when using traditional FFT 
algorithms, but it requires large amounts of computer RAM. Other 
disadvantages of the GRAPE algorithm are the significant complication of 
the rules for rearranging the elements of the processed sequence and the 
increase in the number of addition operations. In most sources, this 
algorithm is not even mentioned [4, 25]. 
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1.2 Proni transform 
 

In scientific literature, the Proni transform is sometimes called the Proni 
method, the Proni decomposition, the Proni transform or the Proni filtration. 
The French mathematician Gaspard Richet (Baron de Prony) in 1795 
proposed a method for modeling a sequence of data samples using a linear 
combination of exponential functions. Currently, this method is generalized 
to a model consisting of decaying sinusoids (complex exponents). In 
addition, it uses a procedure for estimating the model parameters using the 
least squares method to approximate the model fit in cases where the 
number of data points exceeds the minimum required number of exponents. 
In this case, the algorithm is called the generalized Proni method [13, 16, 
18, 73]. Often, the response of a linear system to a pulse action is a set of 
damped sinusoids. For example, short seismic signals reflected from 
different horizons are similar to attenuated sinusoids. For processing and 
interpreting such data, the Proni transform is well suited, since the FT in the 
analysis of short signals does not provide high resolution in the spectral 
region. The main reason is the discrepancy between the short signals being 
studied and the infinite sines and cosines that are used in Fourier 
decomposition. The Proni method uses the decomposition of the signal into 
decaying sines or cosines of the form 
 
                                    𝜆 = 𝐴𝑒−𝛿𝑡 cos(2𝜋𝑓𝑡 + 𝜑)                            (1.10) 
 
and the amplitude, attenuation coefficient, frequency and phase are 
determined (𝐴, 𝛿, 𝑓𝜑). 

The approximation of discrete samples of the signal 𝑦𝑛 by the base 
function (1.10) has the form 
 

𝑥𝑛 = ∑ 𝐴𝑘
𝑚
𝑘=1 exp(𝑗2𝜋𝑓𝑘Δ𝑡𝑛 + 𝑗𝜑𝑘) exp(−𝛿Δ𝑡𝑛) , 𝑛 = 1,𝑁, 

 
where 𝑛 is the reference number, 𝑁 is the number of samples, 𝑚 is the depth 

of decomposition, and Δ𝑡 is the sampling period. The real signal is 

modulated by complex-conjugate exponents. The minimum root-mean-

square error of the approximation of the original function 𝑦𝑛 at 𝑁 

observation points is determined 
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𝜎2 =
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑁−1

𝑖=0

 

 
to find the amplitude, attenuation coefficient, frequency, and initial phase 
of each decomposition level, using the least squares method. Total number 
of parameters

 

 
(𝐴𝑘, 𝛿𝑘, 𝑓𝑘 , 𝜑𝑘)𝑘=1

𝑘=𝑚 
 
is a discrete Proni spectrum, by analogy with the discrete Fourier spectrum. 
This spectrum allows a high degree of approximation of the original non-
stationary signal. In contrast to the DFT, where the frequency has uniform 
samples, the frequency parameter in the case of the Proni transform can 
have arbitrary values and is one of the estimated parameters. Therefore, in 
the case of a discrete Proni spectrum, we get an irregular frequency domain 
for each signal. As a result, for some frequency bands, the values of the 
transmission parameters will be missing, and the width of these bands may 
vary significantly depending on the type of signals or data being analyzed 
[20]. The Proni method is most often used in the seismic exploration of 
minerals, i.e. in the processing and interpretation of seismic data for solving 
various geological problems and problems of developing hydrocarbon 
deposits. It acts as a tool that allows us to localize the areas of anomalous 
scattering and absorption of seismic energy (depending on the time 
frequency), when studying the properties of target horizons and productive 
zones. The analysis and interpretation of these areas make it possible to 
better understand the properties of the target horizons, and the correlation 
of these properties with the reservoirs under consideration makes it possible 
to assess their prospects [20]. It is also used in the determination and 
identification of biogenic signals, for the analysis of seismic signals of a 
person who is walking. The parametric description of the signals makes it 
possible to simplify the formation of diagnostic signs for the recognition of 
an intruder or a group of violators for security alarm systems [22]. It is also 
used to compress information.

 

For practice, the frequency and the attenuation constant are usually of 
greatest interest. When processing a signal using the Proni transform, 



APPLICATION OF CONTINUOUS FAST WAVELET TRANSFORM... 
 
 
 
 

22 

difficulties arise and to overcome them, it is necessary to solve some 
questions, such as: how long should the processing window be selected, 
how to determine the beginning of the signal, what happens if the beginning 
of the processing window does not coincide with the beginning of the pulse, 
how to get rid of interference, etc. 
 
1.3 Wavelet transform 

 
The fundamentals of wavelet analysis were developed in the mid-1980s 

as an alternative to FT for the study of time (spatial) series with pronounced 
heterogeneity. Wavelet transforms are usually divided into discrete WT and 
continuous WT. 

The development of wavelets is associated with several directions which 
were initiated by the work of Haar at the beginning of the 20th century. A 
significant contribution to the theory of wavelets was made by Guppilaud, 
Grossman and Morlet, who formulated the main ideas of continuous WT 
(1982), J. Olaf-Stromberg with early works on discrete wavelets (1983), I. 
Daubechies, who developed orthogonal wavelets with a compact carrier 
(1988), Mallat, who proposed a multiple-scale method (1989), N. Delprat, 
who created a time-frequency interpretation of continuous WT (1991), 
Newland, who developed harmonic WT, et al. [23, 66, 72]. 

Unlike FT, which localizes frequencies but does not give a time 
resolution of the process, and the delta function apparatus, which localizes 
moments of time but does not have a frequency resolution, WT, which has 
a self-adjusting mobile frequency-time window, equally well detects both 
low-and high-frequency characteristics of the signal at different time 
intervals. This versatility has ensured that wavelet analysis is widely used 
in various fields of knowledge. Discrete WT is usually used for signal 
encoding, while continuous WT is used for signal analysis [9, 23, 72]. 
Discrete WT is widely used in engineering and programming, and 
continuous WT is widely used in scientific research. Families of analyzing 
functions, called wavelets, are used in the analysis of various images, to 
study the structure of turbulent fields, to compress large amounts of 
information, to use in image recognition problems, in signal processing and 
synthesis, to determine the characteristics of fractal objects. They are used 
in astrophysics, geophysics, optics, quantum mechanics, for the analysis of 

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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blood pressure, pulse and ECG and DNA analysis. They are also used in 
protein research and climate research. 
 
1.3.1 Continuous (integral) wavelet transform 

 
Wavelet analysis is the decomposition of the signal under study by 

functions localized both in physical space (time, coordinate) and in Fourier 
space (frequency). The wavelet decomposition projects a one-dimensional 
signal onto the time-frequency half-plane, which makes it possible to 
separate different-scale events and to investigate the dependence of spectral 
characteristics on time. The family of wavelet functions 𝜓𝑎𝑏(𝑡) is generated 
from a single "parent" function 𝜑(𝑡) by stretching (compression) and 
shifting 
 

𝜓(𝑡) =
1

√𝑎
𝜑 (

𝑡 − 𝑏

𝑎
) 

 
due to the operation of shifting in time 𝑏 and changing the time scale 𝑎 [1, 
9, 66]. For the given values of the parameters 𝑎 and 𝑏, the function 𝜓𝑎𝑏(𝑡) 
is the wavelet. The multiplier 1

√𝑎
 ensures that the norm of these functions is 

independent of the scaling number 𝑎. In general, this multiplier is written 
as 𝑎𝑘, where the parameter k is the exponent of the scale factor. The specific 
choice of this parameter depends on the purpose of the analysis. The 
exponent of the scale factor 𝑘 = −

1

2
 is used to ensure that the signal at each 

scale has the same energy and if the results of the wavelet analysis are 
supposed to be compared with the Fourier representation of the signal. 

The parameter 𝑘 = – 1 is widely used, in which equal values of the 
wavelet coefficients 𝑊(𝑎, 𝑏) correspond to equal amplitudes of the signal 
ripples, regardless of the ripple scale [2]. Wavelets are special functions in 
the form of short waves (bursts) with a zero integral value and localization 
along the axis of the independent variable (𝑡 or 𝑥), capable of shifting along 
this axis and scaling (stretching and compression). Any of the most 
commonly used types of wavelets generate a complete orthogonal system. 
In the case of wavelet analysis (decomposition) of a process (signal), by 
changing the scale, the wavelets are able to detect differences in the 
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characteristics of the process on different scales, and by wavelets shifting 
the properties of the process can be analyzed at different points over the 
entire interval under study. It is due to the completeness property of this 
system that it is possible to restore (reconstruct or synthesize) the process 
by means of the inverse WT [9, 24, 66]. 

Thus, in the frequency domain, the wavelet spectra are similar to bursts 
(waves) with a peak at the frequency 𝜔 and a band Δ𝜔, i.e. they have the 
form of a bandpass filter; in this case, 𝜔 and Δ𝜔 decrease with the growth 
of the parameter 𝑎. Hence, the wavelets are localized in both the time and 
frequency domains. It should be noted that the spectral representation 
(image) of the wavelets is similar to the window setting in the window 
Fourier transform. However, the difference is that the properties of the 
window (its width and frequency movement) are inherent in the wavelets 
themselves. In this regard, with the help of wavelets, it is possible to analyze 
and synthesize the local feature of any signal 𝑆(𝑡) (the function 𝑆(𝑥)). In 
WT, the term "shift" means that in the window Fourier transform, it also 
refers to the location of the window. This term refers to the temporal 
information present as a result of the WT signal 𝑆(𝑡). With WT, we do not 
have a frequency parameter, as with the windowed Fourier transform, 
instead, we use a scale factor 𝑎, which can be defined as the inverse of the 
frequency [1, 9, 24, 66]. 

The continuous WT of a one-dimensional signal 𝑆(𝑡) is its representation 
as a Fourier integral over a system of basis functions 𝜓(𝑡) [1, 9, 66]: 
 
                               𝑊(𝑎, 𝑏) =

1

√𝑎
∫ 𝑆(𝑡)

∞

−∞
𝜓 (

𝑡−𝑏

𝑎
)𝑑𝑡                               (1.11) 

 
It follows from (1.11) that the wavelet spectrum 𝑊(𝑎, 𝑏), in contrast to 

the Fourier spectrum, is a function of two arguments: the first argument 𝑎 
(time scale) is analogous to the oscillation period, and the second argument 
𝑏 is the signal offset along the time axis. The spectrum 𝑊(𝑎, 𝑏) of a one-
dimensional signal 𝑆(𝑡) is a surface in three-dimensional space. The three-
dimensional image of the spectrum allows us to analyze the properties of 
the signal simultaneously in the physical and frequency spaces. 

In the course of using wavelets for signal analysis, continuous WT is 
more convenient; its certain redundancy, associated with a continuous 
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change in the scale factor 𝑎 and the shift parameter 𝑏, becomes a positive 
quality, since it allows us to more fully and clearly present and analyze the 
information contained in the data [1, 9, 57, 58]. 

Like the inverse FT, there is an inverse continuous WT [2]: 
 
                           𝑆(𝑡) = 𝐶𝜓

−1 ∫ ∫ 𝜓
∞

−∞

∞

0
(
𝑡−𝑏

𝑎
)𝑊(𝑎, 𝑏)

𝑑𝑎𝑑𝑏

𝑎3+𝑘
                     (1.12) 

 
where 𝐶𝜓 is normalizing coefficient: 
 

𝐶𝜓 = ∫ |𝐹𝜓(𝜔)|
2∞

−∞
∙ 𝜔−1𝑑𝜔 < ∞, 

 
𝐹𝜓(𝜔) Fourier spectrum of the basis function, and the parameter 𝑘 is the 
exponent of the scale factor. 

In some cases, at the stage of signal reconstruction (synthesis), it is 
possible to use a different wavelet than the one used at the stage of 
decomposition (analysis), compensating for the "shortcomings" of the 
original wavelet [66, 72]. 
 
1.3.2 Discrete wavelet transform 

 
The main difference between discrete and continuous WT is the use of 

different types of wavelets. As a rule, discrete wavelets have no derivatives 
and, when decomposed into a Fourier series, they have long "tails". For 
discrete WT, in addition to the wavelet, the scaling function is also used. 
The scaling function and the wavelet are evaluated recursively and have no 
analytical expressions. The origins of discrete WT go back to 1976, when 
the method of sub-band (pyramidal) encoding of the speech signal was 
developed. With this encoding, the signal is passed through a tree-like 
connection of RF and LF filters. Let the sequence 𝑥[𝑛] be obtained by 
sampling the continuous signal 𝑥(𝑡). First, the signal is passed through a 
low-pass filter with a pulse response 𝑔 
 

𝑦[𝑛] = (𝑥∗𝑔)[𝑛] = ∑ 𝑥[𝑘]∞
𝑘=−∞ 𝑔[𝑛 − 𝑘], 

 
that is, the convolution is calculated [30]. 
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At the same time, the signal is decomposed using the high-pass filter ℎ. 
The result is the detailing coefficients (after the RF filter) and the 
approximation coefficients (after the LF filter, Fig. 1.3.2.1). These two 
filters are related and are called quadrature mirror filters (QMF). Since half 
of the frequency range of the signal was filtered out, then, according to 
Kotelnikov's theorem, the signal counts can be reduced by two times [30]: 
 

𝑦𝑙𝑜𝑤[𝑛] = ∑ 𝑥[𝑘]

∞

𝑘=−∞

𝑔[2𝑛 − 𝑘] 

𝑦ℎ𝑖𝑔ℎ[𝑛] = ∑ 𝑥[𝑘]

∞

𝑘=−∞

ℎ[2𝑛 − 𝑘] 

 
This decomposition halved the time resolution due to the thinning of the 

signal. However, each of the resulting signals represents half the frequency 
band of the original signal, so the frequency resolution is doubled. 
 

 
Figure 1.3.2.1. Signal decomposition scheme for discrete WT 

 
This decomposition can be repeated several times to further increase the 

frequency resolution with further thinning of the coefficients after low-pass 
and high-pass filtering. 
 

 
Figure 1.3.2.2. Three-level filter bank (comb) 
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This decomposition can be represented as a binary tree, where the leaves 
and nodes correspond to spaces with different time-frequency localization. 
This tree represents the structure of the filter bank (comb) (Fig. 1.3.2.2) 
[30]. At each level of the diagram above, the signal is decomposed into low 
and high frequencies. After double decimation, the signal length must be a 
multiple of 2𝑛, where 𝑛 is the number of decomposition levels. The signal 
is restored in the inverse order, i.e. zero elements are added to the detailing 
and approximating coefficients, passed through mirror filters, and added 
together. 

For the synthesis of scaling and wavelet functions, a system of equations 
for the pulse characteristics of filters is solved, and the scaling and wavelet 
functions are recursively calculated from these characteristics. The larger 
the order of the wavelet, the more complex the system of equations. I. 
Daubechies managed to find a method that allows us to construct an infinite 
series of orthogonal wavelets, each of which is determined by a finite 
number of coefficients. It became possible to construct an algorithm that 
implements the fast wavelet transform (FWT) of discrete data (Mall's 
algorithm). The disadvantages of discrete wavelets include the asymmetry 
of the shape and the sharp boundaries of the basis function. Not all discrete 
wavelets have FWT algorithms [59]. 
 

1.4 Wavelet functions 

 

A wide set of wavelets can be used as basis functions. For practical 
application, it is important to know the features that the original function 
must necessarily have in order to become a wavelet. 
 
Let us consider the main features [1, 9, 66]. 
 

1. Limitation. The square of the norm of the function must be finite: 
 

||𝜓||
2

= ∫|𝜓(𝑡)|2
∞

−∞

𝑑𝑡 < ∞ 

 

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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2. Localization. WT, unlike FT, uses the original function, localized in 
both time and frequency. To do this, it is enough that the conditions 
are met: 
 

|𝜓(𝑡)| ≤ 𝐶(1 + |𝑡|)−1−𝜀 
|𝑆𝜓(𝜔)| ≤ 𝐶(1 + |𝜔|)−1−𝜀 , 𝜀 > 0 

 
3. Zero average. The graph of the original function should oscillate (be 

alternating) around zero on the time axis and have zero area [1, 9] 
 

∫ 𝜓(𝑡)

∞

−∞

𝑑𝑡 = 0 

 
From this condition, the choice of the name "wavelet" – a small 
wave-becomes clear. If the area of the function 𝜓(𝑡), i.e. the zero 
moment, is equal to zero, the FT 𝑆(𝜔) of this function is equal to 
zero at 𝜔 = 0 and has the form of a bandpass filter. For different 
values of 𝑎, this is a set of bandpass filters. 
Often, for applications, it is necessary that all the first 𝑛 moments 
are equal to zero [1, 9]: 
 

∫ 𝑡𝑛𝜓(𝑡)

∞

−∞

𝑑𝑡 = 0 

 
Wavelets of 𝑛-th order allow one to analyze the finer (high-
frequency) structure of the signal, suppressing its slowly changing 
components. 

 
4. Self-modality. A characteristic feature of a wavelet is its self-

similarity. All the wavelets of a particular family 𝜓(𝑡) have the same 
number of oscillations as the parent wavelet 𝜓(𝑡) because they are 
obtained from it by means of scale transformations (𝑎) and shift (𝑏). 
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The choice of the analyzing wavelet is largely determined by what 
information needs to be extracted from the signal. Taking into account the 
characteristic features of different wavelets in the time and frequency 
spaces, it is possible to identify certain properties and features in the 
analyzed signals that are invisible on the signal graphs, especially in the 
presence of strong noise. At the same time, the task of signal reconstruction 
may not be set, which expands the family of used wavelet functions. To 
construct such wavelets, derivatives of the Gaussian function are often used 
[9, 66]: 
 

𝜓𝑚(𝑡) = (−1)𝑚
𝜕𝑚

𝜕𝑡𝑚
[exp (−

𝑡2

2
)] 

 
The higher derivatives of the Gaussian function have more zero moments 

and allow us to extract information about the higher-order features 
contained in the signal. We will present some wavelets used in the study of 
signals. 

The MHAT-wavelet is calculated from the second derivative (𝑚 = 2) of 
the Gaussian function. The Wavelete equation is: 
 

𝜓(𝑡, 𝑎, 𝑏) =
1

√𝑎
= (1 − (

𝑡 − 𝑏

𝑎
)

2

) exp [−
1

2
∙ (

𝑡 − 𝑏

𝑎
)

2

] 

 
The wavelet is symmetric, the wavelet spectrum is represented only by 

the real part, and it is well localized in frequency. The first and last moments 
of the wavelet are zero. The wavelet is used for analyzing complex signals. 

Figure 1.4.1 shows the MHAT-wavelet for the scale factor 𝑎 = 3. Fig. 
1.4.2 shows the MHAT-wavelet for the scale factor 𝑎 = 15. 
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Figure 1.4.1. MHAT-wavelet for 𝑎 =  3 

 

 
Figure 1.4.2. MHAT-wavelet for 𝑎 = 15 

 
Figures 1.4.3 and 1.4.4 show the second-order wavelet spectra for 𝑎 = 3 

and 𝑎 = 15. 
 

 
Figure 1.4.3. MHAT-wavelet spectrum for 𝑎 = 3 
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Figure 1.4.4. MHAT-wavelet spectrum for 𝑎 = 15 

 
Figure 1.4.5 shows a graph of the third-order derivative of the Gaussian 

function for the scale coefficients 𝑎 = 3 (blue) and 𝑎 = 15 (purple). 
 

 
Figure 1.4.5. The third-order derivative of the Gaussian function for 𝑎 = 3 and 𝑎 = 15 

 
Figure 1.4.6 shows a graph of the fourth-order derivative of the Gaussian 

function for the scale coefficients 𝑎 = 3 (blue) and 𝑎 = 15 (purple). 
 

 
Figure 1.4.6. The fourth-order derivative of the Gaussian function for 𝑎 = 3 and 𝑎 = 15 
 

A complex Morlaix wavelet is a plane wave modulated by a Gaussian of 
unit width. The Wavelet equation is 
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𝜓(𝑡, 𝑎, 𝑏) =
1

√𝑎
∙ exp(𝑖𝜔0𝑡) exp [−

1

2
∙ (

𝑡 − 𝑏

𝑎
)
2

] 

 
Figure 1.4.7 shows the graph of the real part of the Morlaix function for 

𝑎 = 15. 
 

 
Figure 1.4.7. Complex Morlet wavelet 

 
Figures 1.4.8, 1.4.9 show the spectra of the real part of the Morlet 

wavelet for different scale coefficients. 
 

 
Figure 1.4.8. Spectrum of the real part of the Morlet wavelet for 𝑎 = 1 
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Figure 1.4.9. Spectrum of the real part of the Morlet wavelet for 𝑎 = 15 

 
If we characterize the width of the wavelet spectrum ∆𝜈 by the value 

 

(∆𝜈)2 = ∫ 𝜈2𝐹(𝜈)2

∞

−∞

𝑑𝑣 

 
which is a measure of the "spread" of energy in the frequency domain, and 
as a measure of the duration of the wavelet ∆𝑡, we take the value 
 

(∆𝑡)2 = ∫(𝑡 − 𝑚𝑡)
2𝜓(𝑡, 𝑎, 𝑏)2

∞

−∞

𝑑𝑡 

 
where 𝑚𝑡 = ∫ 𝑡 𝜓(𝑡, 𝑎, 𝑏)2∞

−∞
𝑑𝑡. Then the uncertainty principle is fulfilled 

for them 
 

∆𝑡 ∆𝜈 ≥
𝐸

4𝜋
 

 
where 𝐸 = ∫ 𝑓(𝑡)2∞

−∞
𝑑𝑡. 

 
Figures illustrate the uncertainty principle, which states that it is 

impossible to achieve localization of energy simultaneously in both the time 
and frequency domain. The wider the wavelet, the narrower the spectrum, 
and the narrower the wavelet, the wider the spectrum. Wavelets have the 
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properties of variable time-frequency resolution, which compares favorably 
with windowed FT. For an effective study of non-stationary signals, just 
such basis functions are needed. 
 
1.4.1 Properties of wavelet analysis 

 
The forward WT contains the combined information about the analyzed 

signal and the analyzing wavelet. Wavelet analysis allows us to obtain 
objective information about the analyzed signal, since the properties of WT 
(linearity, invariance with respect to shear and invariance with respect to 
stretching (compression)) do not depend on different basis functions [1, 9, 
66]. 
 

1. Linearity. It follows from the scalar product 
 

𝑊[𝛼𝑆1(𝑡) + 𝛽𝑆2(𝑡)] = 𝛼𝑊1(𝑎, 𝑏) + 𝛽𝑊2(𝑎, 𝑏) 
 

2. Shift. A shift of the signal in the time domain by 𝑏0 leads to a shift 
of the wavelet image also by 𝑏0: 
 

𝑊[𝑆(𝑡 − 𝑏0)] = 𝑊[𝑎, 𝑏 − 𝑏0] 
 

3. Scaling. Stretching (compression) of the signal also leads to 
stretching (compression) of it in the region 𝑊(𝑎, 𝑏): 
 

𝑊 [𝑆 (
𝑡

𝑎0
)] =

1

𝑎0
𝑊 [

𝑎

𝑎0
,
𝑏

𝑏
] 

 
4. Differentiation: 

 

𝑊[𝑑𝑡
𝑚𝑆] = (−1)𝑚 ∫ 𝑆(𝑡)

∞

−∞

𝑑𝑡
𝑚[𝜓𝑎𝑏(𝑡)]𝑑𝑡 

 
where 𝑑𝑡

𝑚 =
𝑑𝑚[… ]

𝑑𝑡𝑚 , 𝑚 ≥ 1. 
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It follows from this property that it is possible to ignore large-scale 
components and analyze high-order features or small-scale 
variations of the 𝑆(𝑡) signal by differentiating either the wavelet or 
the signal itself the required number of times. This means that the 
wavelet spectrum of the derivatives is easy to calculate using the 
derivatives of the basis functions. 
 

5. Scale-time localization. It is due to the fact that the elements of the 
WT basis are well localized and have a mobile time-frequency 
window. By changing the scale (increasing the coefficient a leads to 
a narrowing of the Fourier spectrum of the function 𝜓(𝑡)), wavelets 
are able to detect differences in characteristics on different scales 
(frequencies), and by shifting-to analyze the properties of the signal 
at different points over the entire studied interval. Therefore, when 
analyzing non-stationary signals, due to the locality property, WT 
has a significant advantage over the Fourier transform, which gives 
only global information about the frequencies (scales) of the 
analyzed signal since the system of functions used in this case (the 
complex exponent or the sines and cosines) is defined on an infinite 
interval. 

 
1.4.2 Advantages and disadvantages of the wavelet transform 
 

The wavelet transform of signals is a generalization of spectral analysis, 
whose typical representative is the Fourier transform. WT has almost all the 
advantages of FT. However, the FT basis functions do not satisfy the 
necessary condition of simultaneous localization in time space and 
frequency space. They cover the entire time axis, so they do not allow us to 
get localized information, such as when the signal frequency changes. Some 
of the problems are removed when using the window FT. But the basis 
functions of the windowed FT have the same frequency and time resolution 
for all points of the transform plane while the WT basis functions have 
different resolutions. When using the window Fourier transform, the narrow 
window has the best time resolution, and the wide window has the best 
frequency resolution. The problem is that we have to choose a fixed window 
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for the entire signal, whereas different parts of the signal may require 
different windows. 

Unlike windowed FT, continuous WT has good time resolution and poor 
frequency resolution at high frequencies, while at low frequencies it has 
good frequency resolution and poor time resolution. The basis function WT 
is well localized and quickly tends to zero outside of a small interval. This 
property of WT gives it a great advantage in signal analysis, since fast signal 
variations (high-frequency characteristics) are well-localized, and a good 
low-frequency resolution is sufficient to detect slowly changing 
characteristics. When the signal has high-frequency components of short 
duration and low-frequency components of extended duration, the use of 
WT is most effective. The wavelet transform analyzes the signal at different 
frequencies and at different resolutions simultaneously. 

The wavelet bases can be well localized in both frequency and time. 
When identifying well-localized multi-scale processes in the signals, only 
those scale levels of decomposition that are of target interest can be 
considered. 

Wavelet bases, in contrast to FT, have quite a lot of different basis 
functions, the properties of which are focused on solving various problems. 
The properties of the wavelet coefficients as functions of both the scale and 
the position of the point represent a unique opportunity to describe point 
singularities. The higher the order of the analyzing wavelet, the more zero 
moments it has, and the better WT differentiates the singularities. Wavelet 
analysis allows us to find fractional Helder exponents, because it can be 
used to investigate, characterize, and easily distinguish some specific local 
properties of generalized functions, and it also allows us to determine the 
fractal dimensions of sets of points in which the function is singular [1, 9]. 

The disadvantage of WT is its relative complexity, the difficult 
interpretation of WT results. In [1], it is noted that WT is by no means a 
substitute for Fourier analysis, and it has no fewer advantages. It simply 
allows us to look at the analyzed processes from a slightly different point of 
view. WT makes it possible to effectively study signals that do not have a 
clearly defined periodicity. Thus, these two types of analysis are more 
complementary to each other than competitors. 
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1.5 Conclusions 

 
1. Traditional spectral analysis based on the Fourier transform is 

inefficient for non-stationary signals, when the time of frequency 
change is much less than the duration of the implementation 
intended for analysis. 
 

2. The Proni transform is well-suited for processing short, fast-
changing signals, but for calculating long, non-stationary signals, 
FFT cannot be used to reduce the calculation time. 
 

3. The wavelet transform is well suited for analyzing non-stationary 
signals of any duration and allows us to isolate the frequencies and 
the time of the signal frequency change. 
 

4. The disadvantages of discrete wavelets include the asymmetry of the 
shape and the sharp boundaries of the basis function. The discrete 
WT is calculated in the time domain, which requires a lot of time for 
a large sample of the signal. 
 

5. Continuous WT can also be performed in the frequency domain, 
which allows the use of FFT algorithms to speed up calculations. 
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2 DEVELOPMENT OF ALGORITHMS FOR NUMERICAL 

CALCULATION OF THE FORWARD AND INVERSE  FAST 

CONTINUOUS WAVELET TRANSFORM WITH AN 

ARBITRARY SCALING FACTOR 

 
2.1 Algorithm for numerical calculation of the direct fast continuous 

wavelet transform in the frequency domain 

 
Continuous WT has a number of positive properties (symmetry, 

smoothness of the basis function, the possibility of analytical 
description), which are necessary for the analysis and synthesis of the 
signals under study. However, the impossibility of practical 
implementation of the transformation in real time negates all the positive 
properties of the continuous WT. 

WT algorithms are represented in widely used computer mathematics 
systems, such as MathCAD, MATLAB and Mathematica. Continuous WT is 
usually performed by direct numerical integration [1]. Calculating WT by 
direct numerical integration for large time sequences takes a long time. The 
direct calculation of WT requires 𝑁2 multiplication operations [25]. The 
number of computational operations is significantly higher compared to the 
WT calculation algorithm using FFT, in which the number of multiplication 
operations increases almost linearly. To increase the performance, the 
algorithm of continuous fast WT using FFT is developed. 
 
2.1.1 The principle of calculating continuous WT in the frequency 

domain 

 

The goal is to obtain the formula for calculating the Fourier spectrum 
WT 𝑊(𝑎, 𝑏) using the Fourier spectrum of the signal 𝑆(𝑡) and the Fourier 
spectrum of the wavelet 𝜓(𝑡). 

The wavelet spectrum 𝑊(𝑎, 𝑏) is the correlation between the wavelet at 
different scales 𝑎 and the signal 
 

𝑊(𝑎, 𝑏) = ∫ 𝑆(𝑡)

2𝜋

0

𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 
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Let’s decompose the signal 𝑆(𝑡) into a Fourier series 
 

𝑆(𝑡) =
𝑎0

2
+ ∑ (𝑎𝑛 cos (

2𝜋

𝑇
𝑛𝑡) + 𝑏𝑛 sin (

2𝜋

𝑇
𝑛𝑡))

∞

𝑘=1

 

Let 𝑇 = 2𝜋, then 
 

𝑆(𝑡) =
𝑎0

2
+ ∑(𝑎𝑛 cos(𝑛𝑡) + 𝑏𝑛 sin(𝑛𝑡))

∞

𝑘=1

 

 

From the generalized closure equation, it follows that the Fourier series 
of the signal 𝑆(𝑡) can be directly integrated by multiplying by the function 
𝜓𝑎(𝑡 − 𝑏). 
 

𝑊(𝑎, 𝑏) = ∫
𝑎0

2

2𝜋

0

𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + ∑ ∫ (𝑎𝑛 cos 𝑛𝑡 + 𝑏𝑛 sin 𝑛𝑡)

2𝜋

0

∞

𝑛=1

𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 = 

= ∫
𝑎0

2

2𝜋

0

𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + ∫ 𝑎1

2𝜋

0

cos 𝑡 𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + ∫ 𝑎2

2𝜋

0

cos 2𝑡 𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + 

+ ∫ 𝑎3

2𝜋

0

cos 3𝑡 𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + ⋯ + ∫ 𝑎1

2𝜋

0

sin 𝑡 𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + 

+ ∫ 𝑎2

2𝜋

0

sin 2𝑡 𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + ∫ 𝑎3

2𝜋

0

sin 3𝑡 𝜓𝑎(𝑡 − 𝑏)𝑑𝑡 + ⋯ 

 

Decompose the wavelet 𝜓𝑎(𝑡 − 𝑏) into a Fourier series: 
 

𝜓𝑎(𝑡 − 𝑏) =
𝑐0

2
+ ∑(𝑐𝑛 cos(𝑛𝑡 − 𝑛𝑏) + 𝑑𝑛 sin(𝑛𝑡 − 𝑛𝑏))

∞

𝑘=1

= 

=
𝑐0

2
+ ∑(𝑐𝑛(cos(𝑛𝑡) cos(𝑛𝑏) + sin(𝑛𝑡) sin 𝑛𝑏))

∞

𝑘=1

+ 

+𝑑𝑛(sin(𝑛𝑡) cos(𝑛𝑏) − cos(𝑛𝑡) sin(𝑛𝑏)) 
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Substituting the Fourier series of the wavelet 𝜓𝑎(𝑡 − 𝑏) into each integral, 
we obtain 

 

𝑊(𝑎, 𝑏) = ∫ (
𝑎0𝑐0

4
)

2𝜋

0

𝑑𝑡 + ∫ (𝑎1

𝑐0

2
)

2𝜋

0

cos(𝑡) 𝑑𝑡 + ∫ (𝑎1

𝑐0

2
)

2𝜋

0

sin(𝑡) 𝑑𝑡 + 

+ ∫ (
𝑎0

2
𝑐1)

2𝜋

0

cos(𝑡) cos(𝑏) 𝑑𝑡 + ∫ (
𝑎0

2
𝑐1)

2𝜋

0

sin(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑎1𝑐1)

2𝜋

0

cos(𝑡) cos(𝑡) cos(𝑏) 𝑑𝑡 + ∫ (𝑎1𝑐1)

2𝜋

0

cos(𝑡) sin(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑎1𝑑1)

2𝜋

0

cos(𝑡) sin(𝑡) cos(𝑏) 𝑑𝑡 − ∫ (𝑎1𝑑1)

2𝜋

0

cos(𝑡) cos(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑏1𝑐1)

2𝜋

0

sin(𝑡) cos(𝑡) cos(𝑏) 𝑑𝑡 + ∫ (𝑏1𝑐1)

2𝜋

0

sin(𝑡) sin(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑏1𝑑1)

2𝜋

0

sin(𝑡) sin(𝑡) sin(𝑏) 𝑑𝑡 − ∫ (𝑏1𝑑1)

2𝜋

0

sin(𝑡) cos(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑎2𝑐1)

2𝜋

0

cos(2𝑡) cos(𝑡) cos(𝑏) 𝑑𝑡 + ∫ (𝑎2𝑐1)

2𝜋

0

cos(2𝑡) sin(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑎2𝑑1)

2𝜋

0

cos(2𝑡) sin(𝑡) cos(𝑏) 𝑑𝑡 − ∫ (𝑎2𝑑1)

2𝜋

0

cos(2𝑡) cos(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑏2𝑐1)

2𝜋

0

sin(2𝑡) cos(𝑡) cos(𝑏) 𝑑𝑡 + ∫ (𝑏2𝑐1)

2𝜋

0

sin(2𝑡) cos(𝑡) sin(𝑏) 𝑑𝑡 + 

+ ∫ (𝑏2𝑑1)

2𝜋

0

sin(2𝑡) sin(𝑡) sin(𝑏) 𝑑𝑡 − ∫ (𝑏2𝑑1)

2𝜋

0

sin(2𝑡) cos(𝑡) sin(𝑏) 𝑑𝑡 + ⋯ 

 

Since the system of functions 1, cos(𝑥), sin(𝑥), cos(2𝑥), sin(2𝑥), 
cos(3𝑥), sin(3𝑥), ... is orthogonal: 
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∫ sin(𝑘𝑡)
2𝜋

0
𝑑𝑡 = 0 for any 𝑘 

∫ cos(𝑘𝑡)
2𝜋

0
𝑑𝑡 = 0, if 𝑘 ≠ 0 

∫ cos(𝑝𝑥)
2𝜋

0
sin(𝑘𝑡) 𝑑𝑡 = 0 for any 𝑝, 𝑘 

1

𝜋
∫ cos(𝑝𝑥)

2𝜋

0

cos(𝑘𝑡) 𝑑𝑡 = {
0, if 𝑘 ≠ 𝑝
1, if 𝑘 = 𝑝 ≠ 0

 

1

𝜋
∫ sin(𝑝𝑥)

2𝜋

0

sin(𝑘𝑡) 𝑑𝑡 = {
0, if 𝑘 ≠ 𝑝
1, if 𝑘 = 𝑝 ≠ 0

 

 
We obtain 
 

𝑊(𝑎, 𝑏) = 𝜋 (
𝑎0𝑐0

2
+ 𝑎1𝑐1 cos 𝑏 − 𝑎1𝑑1 sin 𝑏 + 𝑏1𝑐1 sin 𝑏 + 𝑏1𝑑1 cos 𝑏

+ 𝑎2𝑐2 cos 2𝑏 − 𝑎2𝑑2 sin 2𝑏

+ 𝑏2𝑐2 sin 2𝑏 + 𝑏2𝑑2 cos 2𝑏 + ⋯)

= 𝜋 (
𝑎0𝑐0

2
+ (𝑎1𝑐1 + 𝑏1𝑑1) cos 𝑏 + (𝑏1𝑐1 − 𝑎1𝑑1) sin 𝑏

+ (𝑎2𝑐2 + 𝑏2𝑑2) cos 2𝑏 + (𝑏2𝑐2 − 𝑎2𝑑2) sin 2𝑏
+ (𝑎3𝑐3 + 𝑏3𝑑3) cos 3𝑏
+ (𝑏3𝑐3 − 𝑎3𝑑3) sin 3𝑏 + (𝑎4𝑐4 + 𝑏4𝑑4) cos 4𝑏

+ (𝑏4𝑐4 − 𝑎4𝑑4) sin 4𝑏 + ⋯) 
 
The resulting amount is briefly written as follows: 
 

𝑊(𝑎, 𝑏) = 𝜋 (
𝑎0𝑐0

2
+ ∑(𝑎𝑛𝑐𝑛 + 𝑏𝑛𝑑𝑛)

∞

𝑘=1

cos 𝑛𝑏 + (𝑏𝑛𝑐𝑛 − 𝑎𝑛𝑑𝑛) sin 𝑛𝑏) 

 

Denote 
𝑎0

′ = 𝑎0𝑐0, 𝑎𝑛
′ = (𝑎𝑛𝑐𝑛 + 𝑏𝑛𝑑𝑛), 𝑏𝑛

′ = (𝑏𝑛𝑐𝑛 − 𝑎𝑛𝑑𝑛) 
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Then 
 

𝑊(𝑎, 𝑏) = 𝜋 (
𝑎0

′

2
+ ∑(𝑎𝑛

′ cos 𝑛𝑏 + 𝑏𝑛
′ sin 𝑛𝑏)

∞

𝑘=1

) 

 
That is, the Fourier coefficients of the wavelet spectrum 𝑊(𝑎, 𝑏) are 

calculated using the Fourier coefficients of the signal 𝑆(𝑡) and the Fourier 
coefficients of the wavelet 𝜓(𝑡). Using the inverse transformation of the 
sum and the difference of the product of the Fourier coefficients of the 
signal 𝑆(𝑡) and the wavelet 𝜓(𝑡), the wavelet spectrum 𝑊(𝑎, 𝑏) of the 
signal 𝑆(𝑡) is calculated. 

Thus, in order to calculate the WT of a signal in the frequency domain, 
it is necessary to obtain the Fourier spectra of the signal and the wavelet for 
different scale coefficients 𝑎, to find the complex conjugate spectrum, and 
to inverse the Fourier transform of the complex conjugate spectra to obtain 
the wavelet spectrum of the signal. 
 

2.1.2 Algorithm for numerical calculation of direct fast continuous WT 

 
The algorithm for numerical calculation of the direct continuous fast WT 

signal 𝑆(𝑡) in the frequency domain includes the following steps. 
 

1. The coefficients of the trigonometric series 𝑎1(𝑛) of the signal 𝑆(𝑘) 
are calculated using the direct fast Fourier transform according to 
the formula 
 

𝑎1(𝑛) =
1

𝑁
∑ 𝑆(𝑘)

𝑁−1

𝑘=0

cos (
2𝜋𝑛𝑘

𝑁
) 

 
2. The coefficients of the trigonometric series 𝑏1(𝑛) of the signal 𝑆(𝑘) 

are calculated using the direct fast Fourier transform according to 
the formula 
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𝑏1(𝑛) =
1

𝑁
∑ 𝑆(𝑘)

𝑁−1

𝑘=0

sin (
2𝜋𝑛𝑘

𝑁
) 

 
3. The coefficients of the trigonometric series 𝑎2(𝑛) of the wavelet 

𝜓(𝑘) are calculated using the direct fast Fourier transform according 
to the formula 
 

𝑎2(𝑛) =
1

𝑁
∑ 𝜓(𝑘)

𝑁−1

𝑘=0

cos (
2𝜋𝑛𝑘

𝑁
) 

 
4. The coefficients of the trigonometric series 𝑏2(𝑛) of the wavelet 

𝜓(𝑘) are calculated using the direct fast Fourier transform according 
to the formula 
 

𝑏2(𝑛) =
1

𝑁
∑ 𝜓(𝑘)

𝑁−1

𝑘=0

sin (
2𝜋𝑛𝑘

𝑁
) 

 
5. The complex conjugate spectrum is calculated: 

 
                 𝑐1(𝑛) = 𝑎1(𝑛) ∙ 𝑎2(𝑛) + 𝑏1(𝑛) ∙ 𝑏2(𝑛)                         (2.1) 
                 𝑐2(𝑛) = 𝑏1(𝑛) ∙ 𝑎2(𝑛) − 𝑎1(𝑛) ∙ 𝑏2(𝑛)                          (2.2) 
 
Most continuous wavelets are either even or odd functions. For even 
– numbered wavelets, the series consists of one cosine, and for odd-
numbered ones-of one sine. For even wavelets by property 5, 
𝑏2(𝑛) = 0 and 
 
                            𝑐1(𝑛) = 𝑎1(𝑛) ∙ 𝑎2(𝑛)                                            (2.3) 
                            𝑐2(𝑛) = 𝑏1(𝑛) ∙ 𝑎2(𝑛)                                             (2.4) 
 
For odd wavelets by property 5, 𝑎2(𝑛) = 0 and 
 
                             𝑐1(𝑛) = 𝑏1(𝑛) ∙ 𝑏2(𝑛)                                             (2.5) 
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                             𝑐2(𝑛) = −𝑎1(𝑛) ∙ 𝑏2(𝑛)                                         (2.6) 
 

6. For an even wavelet with 𝑀 different scale coefficients, the wavelet 
spectrum 𝑊(𝑎, 𝑏) (the matrix of 𝑀 × 𝑁 wavelet coefficients) for the 
input signal of 𝑁 samples is obtained by calculating the 𝑀 inverse 
Fourier transforms of the complex conjugate spectrum (2.3), (2.4) 
by the formula 
 

𝑊(𝑎, 𝑛) = ∑(𝑐1(𝑘) + 𝑖𝑐2(𝑘))

𝑁−1

𝑘=0

exp (𝑖
2𝜋𝑛𝑘

𝑁
) 

 
7. For an odd wavelet with 𝑀 different scale coefficients, the wavelet 

spectrum 𝑊(𝑎, 𝑏) (the matrix of 𝑀 × 𝑁 wavelet coefficients) for the 
input signal of 𝑁 samples is obtained by calculating the 𝑀 inverse 
Fourier transforms from the complex conjugate spectrum (2.5), (2.6) 
according to the formula 
 

𝑊(𝑎, 𝑛) = ∑(𝑐1(𝑘) + 𝑖𝑐2(𝑘))

𝑁−1

𝑘=0

exp (𝑖
2𝜋𝑛𝑘

𝑁
) 

 
For even-numbered wavelets, clauses 4 and 7 are not met. For odd-

numbered wavelets, clauses 3 and 6 are not met. 
The coefficients 𝑎2(𝑛), 𝑏2(𝑛) are calculated only with the wavelet, and 

not with the signal under study. In this regard, it is possible to calculate them 
in advance and store the results of calculations in RAM or ROM. Due to the 
parity (odd) of continuous wavelets, the number of multiplications and 
additions is reduced by 2 times for each scale according to the formulas (2.3 
– 2.6). The amount of memory required to store the Fourier coefficients of 
the wavelets for each scale is also reduced by a factor of 2. Figures 1.4.3 - 
1.4.4 (Chapter 1) show the wavelets and their spectra, where it is clearly 
seen that when the scale factor 𝑎 increases, the wavelet spectra narrow, and 
the wavelets themselves expand. We can use this property to reduce 
memory when storing data. For small scale coefficients 𝑎, less memory is 
needed when storing wavelets, and for large ones-when storing their 
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spectra. Also, fewer multiplications are needed by the formulas (2.3–2.6) in 
the frequency domain because only the low-frequency components of the 
spectrum are different from zero. 

Using decimation when increasing the scale factor allows us to further 
reduce the number of addition and multiplication operations. Decimation 
corresponds to a decrease in the sampling rate, or the removal of some samples 
from the signal. For example, a double decimation means that every second 
sample is removed from the signal. At high scales (low frequencies), the 
sampling rate can be lowered according to Kotelnikov's theorem. When the 
scale factor 𝑎 is increased by eight times, the sampling rate can be lowered by 
eight times, since when the scale is increased, the time resolution decreases and 
the frequency resolution increases, i.e. for a low-frequency component, we can 
specify the frequency value more accurately, but less accurately specify its time 
position. 

Decimation for large scale coefficients does not degrade the time resolution 
of the signal since the deleted samples are redundant and do not carry 
information. There is no need to describe the signal in too much detail, because 
when using WT with a large scale factor, the signal is multiplied by the wavelet 
and integrated over a wider time interval than when using a wavelet with a 
small scale factor. For example, the wavelet coefficients for large scale 
coefficients have the same values for a large offset interval 𝑏 if the same 
sampling rate is used as for small scale coefficients. Therefore, the use of 
decimation allows, without reducing the amount of information contained in 
the signal, i.e. without degrading the resolution, to reduce the number of 
calculations. 

In order to study the wavelet spectrum in the same plane 𝑎 × 𝑏, after 
decimation, it is necessary to use interpolation, i.e. increase the sampling rate. 
The interpolation corresponds to increasing the sampling rate by adding new 
samples between the calculated wavelet coefficients. As new samples, we can 
use zeros or the values of the calculated wavelet coefficients. The use of 
decimation and interpolation reduces the calculation time of the wavelet 
spectrum, since, if we apply uniform sampling, the calculation time of the 
wavelet coefficients increases in proportion to the number of scale coefficients 
𝑎. 

The structural diagram of the direct fast continuous WT device is shown 
in Figure 2.1.2.1. The analyzed signal 𝑆(𝑡) is fed to the ADC(Block 1), from 
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the output of which a discrete sample 𝑆(𝑛) with a length of 𝑁 samples is 
fed to the input of the FFT calculator (block 2). 
 

 
Figure 2.1.2.1. The structural diagrams of the direct fast wavelet transform: 1 – analog-

to-digital converter (ADC); 2 – FFT calculator; 3 – read-only memory; 4.1 – 4.M – 
multipliers; 5.1 – 5.M – inverse FFT calculators; 6 – control device 

 
From the output of block 2, the coefficients of the series 𝑎1(𝑛), 𝑏1(𝑛) of 

the signal simultaneously enter the first inputs of M multipliers (blocks 4.1 
– 4.M). From the ROM (block 3), the coefficients of the series 𝑎2(𝑛) (for 
even), 𝑏2(𝑛) (for odd) wavelets go to the second inputs of M multipliers 
(blocks 4.1 – 4.M), from the outputs of which the multiplication results go 
to the inputs of the inverse FFT calculators (blocks 5.1 – 5.M). 

From the outputs of the M inverse FFT calculators (blocks 5.1-5.M), the 
results of the WT signal are taken in the form of an array of values of the 
wavelet coefficients with the size of 𝑀 scales on 𝑁 shifts 𝑊(𝑚, 𝑛). The 
control device (block 6) synchronizes the operation of ADC units (block 1), 
FFT calculators (block 2), multipliers (blocks 4.1 – 4.M), and inverse FFT 
calculators (blocks 5.1 – 5.M). This device allows us to select various types 
of wavelet functions with an arbitrary sampling step of scale coefficients 
stored in ROM (block 3) for analyzing the input signal [33, 35, 36, 43, 48]. 

The time characteristics of calculating a continuous WT are shown 
below. It is shown that the speed of calculating continuous WT in the 
frequency domain at large scale coefficients 𝑎 is 3 times higher than in the 
traditional calculation in the frequency domain. Thus, the algorithm for 
calculating fast continuous WT combines the advantages of FFT and 
continuous WT. 
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2.2 Algorithm for numerical calculation of the inverse fast continuous 

wavelet transform in the frequency domain 
 

According to the references [77, 78, 79, 80, 82, 83, 86, 87, 89, 90], the 
use of continuous wavelets for signal analysis is considered preferable to 
discrete WT. The use of continuous wavelets for data analysis is more 
convenient, because their certain redundancy, associated with a continuous 
change in the scale factor 𝑎 and the shift parameter 𝑏, becomes a positive 
quality in this case, as it allows one to more fully and clearly present and 
analyze the information contained in the signal. 

It is assumed that the possibility of reconstructing signals using 
continuous wavelets based on the derivatives of the Gaussian function is not 
guaranteed. With the need to have the inverse WT (or the reconstruction 
formula) most of the constraints imposed on the wavelet are related [1, 2, 
8, 9, 23, 24, 59, 60, 65, 66, 72]. In the vast majority of applications used 
in the natural sciences, engineering, for reconstruction, coding of signals, 
discrete wavelets are used. 

The chapter presents an algorithm for calculating the inverse continuous 
fast WT, which allows one to reconstruct the signal with high speed and 
accuracy. 
 
2.2.1 The principle of inverse continuous WT in the frequency domain 
 

In order to develop an algorithm for calculating the inverse continuous 
WT in the frequency domain, some changes are made in the formula (1.12) 
of the inverse continuous wavelet transform. The multiplier that is given in 
the literature in the form 1

√𝑎
  is replaced by the multiplier 1

𝑎
. The normalizing 

coefficient in formula (1.12) is replaced by another coefficient. The 
normalizing coefficient 𝐶 in the developed algorithm is calculated from the 
analogue of Parseval's theorem for the wavelet coefficients: 
 
                 ∫ 𝑆(𝑡)𝑆∗(𝑡) 𝑑𝑡 = 𝐶−1 ∬ 𝑊(𝑎, 𝑏) 𝑊∗(𝑎, 𝑏)

𝑑𝑎𝑑𝑏

𝑎2                    (2.7) 
 
After determining the normalizing coefficient 𝐶 from (2.7), it is 

substituted into the formula 
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                        𝑆(𝑡) = 𝐶−1 ∫ ∫ 𝜓 (
𝑡−𝑏

𝑎
)

∞

−∞

∞

0
𝑊(𝑎, 𝑏)

𝑑𝑎𝑑𝑏

𝑎2
                            (2.8) 

 
The theoretical basis for calculating the inverse continuous fast wavelet 

transform of the signal 𝑆(𝑡) in the frequency domain is the use of formulas 
(2.8) and (2.7). The inverse transform of the product of the wavelet 
spectrum 𝑊(𝑎, 𝑏) and the wavelet 𝜓(𝑡) calculates the integral with respect 
to the variable 𝑏. By summing the resulting integral with respect to the scale 
factor 𝑎, the reconstructed signal 𝑆(𝑡) is calculated. 
 
2.2.2 Algorithm for numerical calculation of the inverse fast continuous 

WT 
 

The algorithm for numerical calculation of the inverse continuous 
wavelet transform according to the formula (2.8) in the frequency domain 
includes the following steps: 
 

1. The coefficients of the trigonometric series 𝑎1(𝑛)  of the wavelet 
spectrum 𝑊(𝑎, 𝑏) are calculated using the direct FFT according to 
the formula 
 

𝑎1(𝑛) =
1

𝑁
∑ 𝑊(𝑎, 𝑘)

𝑁−1

𝑘=0

cos (
2𝜋𝑛𝑘

𝑁
) 

 
2. The coefficients of the trigonometric series 𝑏1(𝑛) of the wavelet 

spectrum 𝑊(𝑎, 𝑏) are calculated using the direct FFT formula 
 

𝑏1(𝑛) =
1

𝑁
∑ 𝑊(𝑎, 𝑘)

𝑁−1

𝑘=0

sin (
2𝜋𝑛𝑘

𝑁
) 

 
3. The coefficients of the trigonometric series 𝑎2(𝑛) of the wavelet 

𝜓(𝑡) are calculated using the direct FFT using the formula 

𝑎2(𝑛) =
1

𝑁
∑ 𝜓(𝑘)

𝑁−1

𝑘=0

cos (
2𝜋𝑛𝑘

𝑁
) 
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4. The coefficients of the trigonometric series 𝑏2(𝑛) of the wavelet 
𝜓(𝑡) are calculated using the direct FFT using the formula 
 

𝑏2(𝑛) =
1

𝑁
∑ 𝜓(𝑘)

𝑁−1

𝑘=0

sin (
2𝜋𝑛𝑘

𝑁
) 

 
5. The complex conjugate spectrum is calculated using the formulas 

(2.1), (2.2). For even wavelets – by formulas (2.3), (2.4); for odd 
ones – by formulas (2.5), (2.6). 
 

6. For an even wavelet, with the 𝑀 + 1 inverse FT of the complex 
conjugate spectrum (2.3), (2.4), the formula (1.3) is calculated 
(matrix ((𝑀 + 1) × 𝑁)𝑠𝑚

′ (𝑡)), where 𝑁 = 2𝑚 (the symbol ' does 
not mean differentiation) 
 

𝑠𝑚
′ (𝑛) = ∑(𝑐1(𝑘) + 𝑖𝑐2(𝑘))

𝑁−1

𝑘=0

exp (𝑖
2𝜋𝑛𝑘

𝑁
) 

 
7. For an odd wavelet, with the 𝑀 + 1 inverse Fourier transforms of 

the complex conjugate spectrum (2.5), (2.6), using the formula (1.3), 
we calculate matrix ((𝑀 + 1) × 𝑁)𝑠𝑚

′ (𝑡), where 𝑁 = 2𝑚 
 

𝑠𝑚
′ (𝑛) = ∑(𝑐1(𝑘) + 𝑖𝑐2(𝑘))

𝑁−1

𝑘=0

exp (𝑖
2𝜋𝑛𝑘

𝑁
) 

 
8. Using the formula (2.7), the normalizing coefficient С is calculated. 

 
9. By the formula 

 

𝑆(𝑛) = 𝐶 ∑ 𝑠𝑚
′ (𝑛)

𝑀

𝑚=0
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the signal is being reconstructed. 
 

Just as with direct WT, the coefficients 𝑎2(𝑛), 𝑏2(𝑛) are calculated only 
for the wavelets, and not for the signal under study. Therefore, they can be 
calculated in advance, and the results of the calculations can be stored in 
RAM. 

For even – numbered wavelets, clauses 4 and 7 are not met, and for odd-
numbered ones, clauses 3 and 6 are not met. 

When calculating the wavelet spectrum 𝑊(𝑎, 𝑏) before using the 
reconstruction formula (2.8) to synthesize the signal 𝑆(𝑡), the normalizing 
factor 1

√𝑎
  is applied in the form of  1

𝑎
 with a scale factor 2 to the power of 

𝑚, and found 𝑚 +  1 wavelet coefficients 𝑊(𝑎, 𝑏) using the direct WT 
algorithm. Just as with direct WT, the amount of memory needed to store 
the wavelet coefficients is twice as small for each scale factor 𝑎 due to being 
odd or even. Increasing the scale factor 𝑎 to the power of 2𝑚 allows us to 
reduce the memory even more, since for large 𝑎, the wavelet coefficients 
are different from zero only for a narrow interval. 

The structural diagram of the inverse continuous WT device is shown in 
Figure 2.2.2.1. 
 

 
Figure 2.2.2.1. The structural diagram of the inverse wavelet transform: 1.0 – 1.M – FFT 

calculators; 2.0 – 2.M – multipliers; 3 – read-only memory; 4.0 – 4.М – inverse FFT 
calculators; 5 – adder; 6 – control device 

The wavelet spectrum 𝑊(𝑚, 𝑛) enters the inputs of the FFT calculators 
(blocks 1.0 – 1.M), from the output of which the coefficients of the series 
𝑎1(𝑛), 𝑏2(𝑛) simultaneously enter the first inputs of the 𝑀 + 1 multipliers 
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(blocks 2.0 – 2.M). From the ROM (block 3), the coefficients of the series 
𝑎2(𝑛) (for even), 𝑏2(𝑛) (for odd) wavelets go to the second inputs of the 
𝑀 + 1 multipliers (blocks 2.0 – 2.M), from the outputs of which the 
multiplication results go to the inputs of the inverse FFT calculators (blocks 
4.0 – 4.M). 

From the M outputs of the inverse FFT calculators (blocks 4.0 – 4.M), 
the coefficients are fed to the inputs of the adder (block 5), where the results 
of the inverse FT are summed, and from the output the result of the inverse 
WT signal 𝑆(𝑛) is removed. 

The control device (block 6) synchronizes the operation of the blocks of 
FFT calculators (blocks 1.0 – 1. M), multipliers (blocks 2.0 – 2.M), inverse 
FFT calculators (blocks 4.0 – 0.M) and the adder (block 5). 

This device allows us to select different types of wavelet functions with 
a scale factor of the 2nd degree 𝑀 and with a normalizing factor of 1

𝑎
, stored 

in ROM 1 (block 3), for signal reconstruction [31, 32, 34]. 
The results of acoustic signal synthesis suggest that the use of continuous 

WT is no worse than discrete wavelet synthesis. The use of continuous 
inverse WT in the frequency domain is preferable for a large sample of an 
acoustic signal, when the calculation speed is much higher than when 
calculating WT by direct numerical integration. Also, as the signal sample 
increases, the accuracy of the signal reconstruction increases. If the 
reconstructed acoustic signal is checked by ear, it is impossible to 
distinguish it from the original. For quantitative comparison, a measure of 
the type of correlation between the reconstructed signal and the original 
signal was used. The Pearson correlation coefficient is calculated using the 
well-known formula 
 
                                   𝑟 =

∑ (𝑥𝑘−𝑥𝑐)𝑛
𝑘=1 (𝑦𝑘−𝑦𝑐)

√∑ (𝑥𝑘−𝑥𝑐)2𝑛
𝑘=1 √∑ (𝑦𝑘−𝑦𝑐)2𝑛

𝑘=1

                                     (2.9) 

 
The dependence of the Pearson correlation coefficient between the 

synthesized acoustic signal and the original signal on the signal sample is 
shown in Figure 2.2.2.2. The acoustic signal sample is plotted on a 
logarithmic scale based on base two. A fragment of an acoustic signal with 
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a duration of 62.5 ms was compared, which corresponds to the number of 
500 samples. 
 

 
Figure 2.2.2.2. Dependence of the Pearson correlation coefficient from the number of 

counts 
 

The results of the comparison show that for a signal with a number of 
samples greater than 2048, the Pearson correlation coefficient r almost does 
not change. If the same fragment of the acoustic signal is "stitched" from 
four fragments of 128 samples, then the Pearson correlation coefficient 𝑟 
decreases by 4.5%, i.e. on the graph this point is located even lower than for 
512 samples. 

To accurately reconstruct the 𝑆(𝑡) signal, it is necessary that the 
frequency band occupied by the signal is smaller than the frequency band 
occupied by the 𝑚 +  1 wavelets used. It is also necessary that the Fourier 
image of the wavelet satisfies the relation [24] 
 

𝐹′(𝜈) = ∑ (𝜓𝑚(𝑎0
𝑚𝜈))

2

𝑚∈𝑍

 

 

 
Figure 2.2.2.3. Frequency response of a set of MHAT-wavelets 
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Since for each value of the scale factor, the wavelet is a bandpass filter, 
the set (sum) of the wavelets is a block of filters with an uneven frequency 
response determined by the constants 𝐴 and 𝐵 (Figure 2.2.2.3). The smaller 
the difference between A and 𝐵, the smaller the recovery error. For a more 
accurate reconstruction, we can construct dual wavelets that reduce the 
difference between 𝐴 and 𝐵. The Fourier image of the dual wavelet has the 
form [24] 
 

�̃�(𝜈) =
𝜓(𝜈)

∑ (𝜓𝑚(𝑎0
𝑚𝜈))

2
𝑚∈𝑍

 

 
By the inverse Fourier transform, we obtain dual wavelets. A set of such 

wavelets is a block of filters with a uniform frequency response. The 
frequency response of a set of dual MHAT wavelets is shown in Figure 
2.2.2.4. 

Studies show that the use of dual wavelets can increase the correlation 
coefficient 𝑟. 
 

 
Figure 2.2.2.4. Frequency response of a set of dual MHAT wavelets 

 

2.3 Profiling of the program for numerical calculation of the continuous 

wavelet transform in the frequency domain and calculations by 

direct numerical integration 
 

The results of the WT speech signals were compared for direct 
calculation and FFT calculation. The time of calculation by direct numerical 
integration and calculation of WT using FFT was compared in Visual Basic 

for Applications in an Excel spreadsheet, as well as in Visual C++. In Visual 

Basic for Applications, the WT calculation time was measured for 50 cycles 
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with different scale factors. A timer with a resolution of 1 s was used for 
profiling. Profiling is the measurement of the performance of both the entire 
program as a whole and its individual fragments. When using a 64-sample 
signal sample, the calculation time by direct numerical integration is less 
than the calculation time of WT using the FFT. When the signal sample is 
increased from 64 to 1024 samples, the time of direct calculation of WT 
increases by 35 times, and the time of calculation using FFT increases by 3 
times and becomes less than the time of direct calculation of WT. When the 
sample is increased to 8192 samples, the conversion time using the FFT 
increases by 21 times, and with a direct calculation, the conversion time 
lasts several tens of minutes, which is unacceptable for processing an 
acoustic signal. 

For more accurate measurements of small intervals in Visual C++, a real-
time tag counter is used, which is accessed using the RDTSC (ReaD from 

Time Stamp Counter) assembly command. The TSC (Time Stamp Counter) is 
a 64-bit register whose contents are incremented with each clock cycle of the 
processor core. Each time a hardware reset occurs (with the RESET signal), 
the TSC counter starts from zero. The bit depth of the register provides a 
countdown without overflow for hundreds of years. The resolution of the 
counter is determined by the processor clock speed. The minimum time 
interval between the two measurements is equal to the inverse of the clock 
frequency. For a processor using a clock frequency of 2.54 GHz, the 
resolution is 0.39 ns. The clock frequency is determined using the TSC real-
time counter. 

The RDTSC command returns the number of clock cycles since the 
processor was started, putting the result in a pair of general-purpose registers 
EDX:EAX. To measure the WT calculation time, a program is written using 
the built-in C++assembler. The counter is graded using the standard OS 
function Sleep [79]. The Sleep function suspends the execution of the thread 
for 1000 ms if the function parameter is 1000. The TSC counter is read before 
calling the Sleep function and after returning from it. The difference between 
these readings is stored in the t_time variable. The number of machine 
clock cycles that have passed in one second of  t_time is divided by 
1000000 and stored in the n_count coefficient, which determines how 
many clock cycles are contained in one microsecond. Since the t_time 
variable is not equal to zero even in the absence of the Sleep function, we 
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need to make adjustments to the t_time variable. After calculating the 
calibration coefficient n_count, the WT is profiled as follows. The TSC 
counter is read before calculating the WT and stored in the t_time variable 
after the conversion is completed. The resulting t_time value is divided by 
the calibration factor n_count and stored in a variable that shows the WT 
execution time in microseconds. The section of the program that performs 
WT using the FFT was profiled for a single scale factor, i.e. for a single cycle. 
The signal sample varied from 64 to 32768 samples. The execution time of 
3-6 points of the forward WT algorithm was measured, because when 
calculating the wavelet spectrum for different scale coefficients a, most time 
is spent finding the complex conjugate spectrum and calculating the inverse 
FFT, since The Fourier coefficients of the signal are calculated once. For 
example, when calculating a wavelet spectrum with 50 scale factors, the 
numerical calculation time of 1 point is less than 1 % of the total time. Figure 
2.3.1 shows the dependence of the time WT in the frequency domain on the 
number of samples. 
 

 
Figure 2.3.1. Dependence of the time WT in the frequency domain on the number of 

samples 
 

The scale factor 𝑎 for each sample is of great importance. For each 
reference, the time was measured 5 times, with a relative error of 4%. When 
profiling WT, we must take into account the compilation mode. In Visual 

Studio, the mode is determined by the project configuration. We can use the 
debug (Win32 Debug) and Release (Win32 Release) configuration. For 
example, when using the debug configuration, the WT time in the frequency 
domain for sampling 64 samples is 10.1 microseconds, and when using the 
output configuration, it is 4.9 microseconds. When using a debug 
configuration, the compiler inserts additional debug instructions. Profiling 
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small fragments of programs leads to gross errors, since even in the absence 
of profiled code, the TSC real-time counter increases by a certain value. For 
the used processor, this value is on average equal to 700 clock cycles. 

Figure 2.3.2 shows the dependence of the time WT in the frequency 
domain for a sample of 32768 samples on the scale factor 𝑎 for three 
algorithms. 
 

 
Figure 2.3.2. Dependence of the time WT in the frequency domain on the scale factor a 

 
The first algorithm does not use the property of wavelet symmetry. The 

second algorithm uses the property of symmetry and the ability to calculate 
the wavelet spectrum for large scale coefficients 𝑎 using a sample with a 
smaller number of samples. In Fig. 1.4.3 - 1.4.4 (Chapter 1), it can be seen 
that when the scale factor 𝑎 increases, the width of the wavelet spectrum 
narrows and only the Fourier coefficients of the lower frequencies are 
different from zero. In this regard, it is sufficient to calculate non-zero 
coefficients. For example, for the scale factor 𝑎 =  477 for 32768 samples, 
we can get the Fourier spectrum of the wavelet using a sample for 512 
samples. To do this, we need to calculate the Fourier spectrum of the 
wavelet with a sample of 512 with a different scale factor 𝑎 and a 
normalizing factor of 1

√𝑎
. Then the wavelet spectrum with double precision 

matches the wavelet spectrum for the sample of 32768 samples. The FFT 
time for 512 samples, respectively, is many times less than for 32768 
samples. Thus, the time WT for large scale coefficients 𝑎 will be determined 
only by the time of the inverse FFT of the complex conjugate spectrum of 
the signal and the wavelet. 

In the third algorithm, in addition to the second case, the possibility of 
reducing the time of the inverse FFT by reducing the number of 
multiplication operations is used. For large scale coefficients 𝑎, it is 
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sufficient to calculate the wavelet spectrum over a certain offset interval 𝑏, 
because the correlation of the signal with the wavelet over a wide interval 
is calculated. In order to produce decimation, we must first pass the signal 
through a low-pass filter. When calculating WT in the frequency domain, 
obtaining a complex conjugate spectrum of a signal and a wavelet with a 
large value of the scale factor 𝑎 is equivalent to passing the signal through 
a low-pass filter. In this regard, the inverse FFT is sufficient to calculate for 
certain values of the offsets 𝑏. These calculated wavelet coefficients are 
sufficient to reconstruct the signal. The implementation of the inverse FFT, 
as well as the direct FFT, is carried out by means of three nested loops, only 
in the inverse sequence. By changing the number of multiplication 
operations in the loop, we can calculate the wavelet coefficients through 
certain values of the 𝑏 offsets. For example, for a signal with a sample of 
32768 samples, when calculating WT with an offset of 𝑏 =  128, the 
number of multiplication operations is reduced by almost 50 times 
compared to 𝑏 = 1. Increasing the offset 𝑏 by a factor of 2 leads to almost 
a twofold decrease in multiplication operations. For the offset 𝑏 = 4096, 
the number of multiplication operations is reduced by 1203 times compared 
to 𝑏 =  1. And the calculation time WT is reduced by 9.5 times compared 
to the first algorithm. In Fig. 2.3.2 it can be seen that a slight increase in the 
scale factor 𝑎 for the initial section leads to a sharp decrease in the 
conversion time for the 2nd and 3rd algorithms. 

The time for calculating the continuous WT in the frequency domain is 
reduced even when using an algorithm in which the signal and wavelet 
spectra are not multiplied by the formulas (2.1–2.6), but the inverse 
transformation of the signal spectrum is performed in such a way that the 
result is equivalent to a continuous WT. It is only necessary to know the 
pattern of using the signal spectrum. Since WT is a frequency analysis of a 
signal with a constant Q-factor, as opposed to the Fourier transform, we can 
choose the width of the signal spectrum so that the Q-factor is constant, and 
study it with different scale coefficients. This algorithm reduces the 
conversion time from 3 to 13.8 times, depending on the scale factor 𝑎. 

It was shown that to perform the FFT of a signal with a sample of 𝑁 
samples, 𝑁

2
log2 𝑁 computational operations of multiplying complex 

numbers are necessary. To calculate WT with a sample of 𝑁 samples with 
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direct numerical integration, it is necessary to have 𝑁2 computational 
multiplication operations. The reduction in the number of multiplication 
operations WT in the frequency domain relative to WT in the time domain 
is estimated by the ratio 𝑁2 to 𝑁 log2 𝑁

2
 equal to 2𝑁

log2 𝑁
. It is also necessary to 

take into account the reduction of addition operations by the same order. 
Therefore, for signals with a large sample, the speed of calculating WT in 
the frequency domain is much higher than when calculating in the time 
domain. 
 
2.4 Multiple-scale signal analysis 

 
The developed algorithms for numerical calculation of the forward and 

inverse fast continuous wavelet transform in the frequency domain allow us 
to represent the signal as a set of its successive approximations. The 
separation (decomposition) of signals into different types of components is 
the basis of multiple-scale analysis (MSA). The concept of "multiscale 
analysis" (multiscale) was formulated in 1986 by Malla and Meyer. 
Wavelets became more popular after Mall's introduction of the MSA 
concept for discrete wavelets. He was the first to use wavelets to encode 
images. The popularity of WT is largely due to the fact that it can be 
successfully used for image compression. The wavelets are directly related 
to the MSA of the signals. The idea of MSA is that the signal is decomposed 
according to the basis formed by shifts and multiple-scale copies of the 
wavelet function. When performing MSA, the signal space 𝐿2(𝑅) is 
represented as a system of nested subspaces 𝑉𝑚. The decomposition of 
functions into wavelet series at a given resolution level 𝑚 for a discrete WT 
is performed by the formula [9, 23, 66] 
 

𝑆(𝑡) = ∑ 𝐶𝑚𝑘

𝑘

𝜑𝑚𝑘(𝑡) + ∑ 𝐷𝑚𝑘

𝑚𝑘

𝜓𝑚𝑘(𝑡) 

 
where 𝜑𝑚𝑘(𝑡) is a scaling function, or scaling function, 𝜓𝑚𝑘(𝑡) is a discrete 
wavelet. Coefficient values 
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𝐶𝑚𝑘 = ∫ 𝑆(𝑡) 𝜑𝑚𝑘(𝑡)𝑑𝑡 

𝐷𝑚𝑘 = ∫ 𝑆(𝑡)𝜓𝑚𝑘(𝑡) 𝑑𝑡 

 
in practice, they are determined using discrete fast WT (Mall's algorithm). 

 
The scaling function and the wavelet are obtained using functional 

equations. As a rule, they do not have an analytical expression. The 
mathematical foundations of multiple-scale analysis are described in many 
sources on discrete WT [9, 23, 66, 72, 105]. 

The algorithm developed in this paper for the inverse fast continuous WT 
allows any signal of duration 𝑁 = 2𝑚 to be represented as 
 

𝑆(𝑡) = ∑ 𝑠𝑚

𝑚+1

𝑚=1

(𝑡) 

 
where 𝑠𝑚(𝑡) = 𝐶𝑠𝑚

′ (𝑡). 
 
The constant 𝐶 can be determined more easily using the corollary of formula 
(2.7) (Parseval's theorem). In the space of real functions, the energy density 
of the signal is 
 

𝐸𝑊(𝑎, 𝑏) = 𝑊𝑙
2(𝑎, 𝑏) 

 
Local energy density at a point 𝑡0 is 
 

𝐸𝛿(𝑎, 𝑡0) = 𝑊𝑙
2(𝑎, 𝑡0) 

 
Then 
                                    𝑆(𝑡0) = 𝐶 ∑ 𝑠𝑚

′𝑚+1
𝑚=1 (𝑡0)                                               (2.10) 

 
The constant 𝐶 calculated by formula (2.7) is the same as the constant 

found by formula (2.10). To avoid division by zero or multiplication by a 
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negative number when calculating using the formula (2.10), it is better to 
calculate the constant 𝐶 for the function at the maximum. 

By analogy with the discrete WT, the entire signal space 𝐿2(𝑅) as a 
whole can be represented as a sequence of nested closed subspaces of the 
corresponding levels 𝑚 of the signal decomposition: 
 

… ⊂ 𝑊𝑚 ⊂ 𝑊𝑚−1 … 𝑊0 
 

The "dimensions" of the subspaces expand continuously as the value of 
𝑚 decreases, and the union of all the subspaces in the limit gives the space 
𝐿2(𝑅). Wavelets in subspaces are formed by the scale transformation 𝜓0𝑘 
 

𝜓0𝑘(𝑡) = 𝜓(𝑡 − 𝑘), 𝑘 ∈ 𝐼 
 
where 𝑘 is the integer shift. A wavelet in the subspace 𝑚 is represented by 
 

𝜓𝑚𝑘(𝑡) = 𝑎𝑚𝜓(𝑎𝑚𝑡 − 𝑘), 𝑘 ∈ 𝐼 
 
The value of parameter 𝑎 is 2. 
 

We form from 𝑠𝑚(𝑡) functions 𝑠𝑚
′′ (𝑡) such that (the symbol ′′ does not 

mean double differentiation) 
 

𝑠𝑚
′′ (𝑡) = 𝑠𝑚(𝑡) 

𝑠𝑚−1
′′ (𝑡) = 𝑠𝑚

′′ (𝑡) + 𝑠𝑚−1(𝑡) etc. 
 

If the signal 𝑠𝑚−1
′′ (𝑡) belongs to the space 𝑊𝑚−1, then at the same time 

it enters the space 𝑊𝑚, and along with it in this space is the signal 𝑠𝑚
′′ (𝑡). 

Reducing the space number allows us to study more and more fine details 
and features of the signal with higher frequency components, i.e. to move 
from a rough approximation to a higher resolution approximation. Then the 
signal with the largest time resolution is 𝑆(𝑡) = 𝑠0

′′(𝑡).The variable 𝑚 is 
called, in the same way as for 𝑎, the scale factor, or the level of analysis. If 
the value of 𝑚 is large, then the function 𝑠𝑚

′′ (𝑡) is a rough approximation of 
𝑆(𝑡), in which there are no details. As the values of 𝑚 decrease, the accuracy 
of the approximation increases. 
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Let's illustrate this with an example. Figure 2.4.1 shows the graphs of the 
function 𝑆(𝑡) and its various approximations, i.e. the function 𝑠𝑚

′′ (𝑡). Signal 
𝑆(𝑡) is decomposed into 12 levels of decomposition. Figure 2.4.1 shows the 
1

20
 part of the signal. In the literature on discrete WT, an 𝑚-step discrete WT 

is called a MSA. The maximum value of 𝑚 is called the depth of 
decomposition of the signal. 
 

 
a 

 

 
b 

 

 
c 
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d 

 

 
e 

Figure 2.4.1. Decomposition of the signal into different levels 
 

For the developed reconstruction algorithm, the depth of the signal 
decomposition is equal to the value 𝑚 + 1. In Figure 2.4.1, 𝑎 𝑚 =  11 is 
the roughest approximation of the signal. Throughout the signal, 𝑠𝑚

′′ (𝑡) has 
an almost constant value. In Figure 2.4.1,𝑏 𝑚 =  6. In the other graphs, the 
value of 𝑚 decreases from 3 to 1. It can be seen that reducing the scale factor 
leads to a more detailed description of the signal. For 𝑚 = 0, the Pearson 
correlation coefficient is 0.999. The reconstructed signal exactly follows the 
contours of the original, and it is impossible to distinguish them on the graph 
[31]. 

The signal can also be examined in inverse order, i.e. first present small-
scale components, and then add larger details to these components, 
gradually approaching the original signal, as in Figure 2.4.1, in inverse 
order. 
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The graphs show that the signal can be approximated with some 
accuracy, depending on the limitation of the number of values of the scaling 
factor 𝑚. Then it is possible to analyze the function or signal at different 
levels of resolution, or scale, also for filtering and smoothing. For example, 
by removing small-scale functions, we can isolate a low-frequency useful 
signal, or, conversely, by removing large-scale functions, we can isolate a 
high-frequency signal. If we use FT to filter the signal, it is not possible to 
remove local noise, and WT allows us to remove it as well. 

Unlike discrete WT, this algorithm is convenient and simple. There is no 
need to calculate approximating and detailing coefficients for scaling and 
wavelet functions. There is no need to find spline and packet wavelets, 
coiflets, and do all sorts of "tricks" (in the terminology of I. Daubechies). 
 

2.5 Conclusions 

 

1. Algorithms for forward and inverse continuous fast WT based on 

fast FT with an arbitrary choice of scaling coefficients are 

developed. Studies of the developed algorithms on real signals are 

carried out. 
 

2. The developed algorithm of continuous WT in the frequency 

domain is much more efficient than calculating WT by direct 

numerical integration. The application of the developed algorithm 

of the inverse continuous WT allows one to reconstruct one-and 

two-dimensional signals with high speed and accuracy. 
 

3. An algorithm for one- and two-dimensional multiple-scale analysis 

using fast continuous WT is developed. An algorithm for 

multiscale signal filtering using fast continuous WT is developed. 
 

4. In contrast to discrete wavelets, signal compression using 

continuous wavelets is possible both in the region of the complex 

conjugate spectrum and in the region of the wavelet coefficients, 

which gives the developed signal reconstruction algorithm more 

options to choose from. 
 

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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5. A comparison of the calculation time of continuous WT in the 

frequency domain with the calculation time by direct numerical 

integration shows that the developed algorithms for continuous fast 

WT in the frequency domain can increase the speed by four orders 

of magnitude compared to the algorithms for calculating 

continuous WT in the time domain. 
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3 APPLICATION OF ALGORITHMS FOR NUMERICAL 

CALCULATION OF FAST CONTINUOUS WAVELET 

TRANSFORM FOR SPEECH RECOGNITION IN RUSSIAN 

 
3.1 Analysis of automatic speech command recognition systems 

 
In connection with the development of computer technology, work is 

actively underway to create systems for automatic recognition of speech 
commands. Being the main component of any friendly interface between 
a machine and a person, the system of automatic recognition of speech 
commands can be integrated into various applications, for example, voice 
control systems, voice access to information resources, language training 
using a computer, assistance to the disabled, access to secret objects 
through voice verification or identification systems. It will be possible to 
use automatic speech command recognition systems more often if it 
becomes possible to control the human voice of various machines in real 
time. 

Currently, most existing systems for automatic recognition of speech 
commands, both at the acoustic and semantic levels, use probabilistic 
models based on statistical language features. The most popular of them 
are based on the formal mathematical apparatus of hidden Markov models 
(HMM). The disadvantage of such models is that to train recognition 
systems based on methods of statistical (probabilistic) modeling of speech 
and language processes, huge amounts of speech data (acoustic, text) are 
required, which requires large financial resources and time. Also, the 
disadvantages of probabilistic models include the fact that the appearance 
of new words in the dictionary leads to a sharp increase in speech 
recognition errors. 

In this regard, a promising approach to the analysis of an acoustic signal 
is the use of multiscale processing methods, in particular those based on 
WT, which allow analyzing and identifying dependencies, or tracking 
changes in the characteristics of an acoustic signal at different scales. 
Multiscale analysis (multi-resolution) allows us to get good time resolution 
(bad frequency) at high frequencies and good frequency resolution (bad 
time) at low frequencies. In other words, the low-frequency details of the 
signal are better localized in the frequency domain, and the high-frequency 
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ones are better localized in the time domain. Obtaining additional 
information of different time scales and different signal resolution scales 
can improve the accuracy of speech recognition, so the development of new 
speech analysis methods based on the latest advances in digital signal 
processing, such as the theory of multiple-scale analysis and WT, is relevant 
[78, 80, 82, 86, 87, 90]. 

In addition to the possibility of multiscale signal representation, WT 
combines the advantages of spatial and frequency filtering methods. The 
hardware analog of WT is multi-channel, bandpass filtering of signals with 
a constant ratio of the filter bandwidth to the central frequency of the signal 
[90]. 

One of the main difficulties in speech recognition is the indefinite 
temporal organization of speech. Obviously, the accuracy of word 
recognition significantly depends on the accuracy of determining the 
boundaries of phonemes. The high efficiency of wavelets in the problems 
of filtering a non-stationary signal in comparison with the Fourier transform 
leads to the problems of creating wavelet algorithms that allow us to 
distinguish certain speech sounds in an acoustic signal at a certain scale 
factor and determine the boundaries between different speech sounds. 

Multiscale signal processing with an arbitrary choice of scaling 
coefficients gives a more complete picture of the local features of a non-
stationary signal, since using only integers as scaling coefficients leads to 
significant information loss when moving from one level of decomposition 
to another. The signal must be processed quickly, and therefore the 
development and research of fast algorithms for multiscale processing of an 
acoustic signal with an arbitrary choice of scaling coefficients remain 
relevant. The specifics of the development and use of fast algorithms for 
multiscale processing of an acoustic signal with an arbitrary choice of 
scaling coefficients are due to the structure of the human ear – in the 
processing of an audio signal, according to I. Daubechies [82], it transmits 
a wavelet image of the signal to the brain. 

The automatic speech command recognition system is an element of the 
speech processing process, the purpose of which is to provide a convenient 
dialogue between the user and the machine. In a broad sense, these are 
systems that perform phonemic decoding of the speech acoustic signal when 
pronouncing speech messages in a free style, by an arbitrary speaker, 

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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without taking into account the problem orientation and restrictions on the 
volume of the dictionary. Therefore, instead of the term "speech command 
recognition", we will use the term "speech recognition". 

Speech recognition as one of the components of artificial intelligence has 
long attracted researchers. Despite some progress made in this area, a 
number of issues remain unresolved. Combined with the problem of speech 
synthesis, they are very interesting issues for research. Sharing such systems 
is at the heart of a full-fledged voice interface. Relatively recently (about 
thirty years ago), speech recognition and synthesis subsystems were 
considered part of a single complex of speech interfaces. However, interest 
in the synthesis disappeared quite quickly. 

First, developers did not solve even a tenth of the difficulties they 
encountered when creating recognition systems. Secondly, unlike speech 
recognition, speech synthesis does not demonstrate significant advantages 
over other means of information output from a computer. Instead of the 
passive use of speech systems "in bulk" (recognition separately, synthesis 
separately), the tasks of interactive human interaction with various systems 
are brought to the fore. 

For a person, it is a dialogue, not a monologue, that is natural and 
familiar. Currently, in practice, a one-way voice interface is often used with 
an overwhelming advantage in the direction of speech recognition, despite 
the fact that the recognition process exceeds the complexity of the speech 
synthesis process. The preference for speech recognition is due to the urgent 
needs of human civilization, which largely depend on the natural features 
of the communicative functions of the human body. On the one hand, they 
provide rich opportunities for the rapid reception of information through the 
visual and auditory organs, on the other, the delivery of information is 
possible through verbal organs (verbal communication) and significantly 
inferior to them in the speed of non-linguistic communication. 
"Communication" with mechanical devices, equipment and devices shows 
even more lag in the speed of non-linguistic means of communication in 
comparison with verbal contact. For example, it is faster for us to give a 
command by voice, dictate a text, or communicate our decision by speech 
than to do it with our hands using the device controls. Of course, not every 
device is justified by this comparison, but many devices would be better 
controlled by voice. 
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The priority is the development of speech recognition systems. 
Traditionally, speech recognition is understood as the entire range of 
services for the transformation of a speech signal into a complete and 
functional set of defining information about the transmitted message. 
However, what is currently used in the voice interface of different devices, 
in principle, is not a set of such services. In fact, often we are talking about 
a system for recognizing sounds and phonemes, converting speech into text, 
recognizing and executing certain commands, extracting certain 
characteristics from speech (for example, identifying the speaker, 
determining his emotional state, gender, age, etc.) or certain sound patterns 
in the speech signal. 

Formally, the process of speech recognition can be described in just a 
few phrases. The analog signal generated by the microphone is converted 
into numbers, and then the so-called phonemes are distinguished in speech, 
i.e. elementary fragments that make up all the spoken words. Then it is 
determined which word, which combination of phonemes corresponds. To 
recognize a word means to find it in the reference dictionary by the 
pronounced combination of phonemes. However, there are several 
problems with speech recognition by reference matching, among which the 
most common are the following: 

1. Temporary changes in the characteristic images of speech. The 
reason for the changes is the different speed of pronouncing the 
same sounds, i.e. the inconstancy of the duration of the sounds. Even 
the same words spoken by the same person change in duration each 
time. If the same words are spoken by different people, their 
duration may differ even more. 

2. The influence of the size of the organ of speech on images. The size 
of the speech organs in humans varies. In this regard, even if the 
words are pronounced by organs of the same shape, their resonant 
frequencies may differ. In the images, this manifests itself as an 
individual feature of a person. There is a problem of articulation 
conjugation, i.e. differences in the same sound due to the influence 
of different preceding and subsequent sounds, the problem of 
accent, which arises due to differences in the manner of speaking 
and in the living conditions of the speakers [11]. 
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Thus, the sound recognition system faces difficulties of a fundamental 
nature. First, the features of the speaker's voice (timbre, noise inclusions 
associated with the structure of the speech tract), the distinctive manner of 
pronouncing certain sounds (acceleration or deceleration of the tempo, 
"swallowing" some sounds, a temporary shift in tonality, the unconscious 
insertion of insignificant sounds between words), specific articulation – all 
this leaves an imprint on the spectral composition of the speech signal. And 
the spectrum under such conditions changes significantly. Moreover, on its 
basis, the sound recognition system tries to distinguish the transitions of 
sound into sound, so it is difficult to form universal sound standards, 
comparisons which would not depend on unforeseen distortions in the 
spectrum. Secondly, a person usually does not pause between words, and 
when speaking together, the recognition task is also added to the task of 
selecting words from the speech stream, which is obviously more difficult. 
The most important case both for the practitioner and for the researcher is 
still fused free speech without limiting the lexicon (or even better, involving 
several people at the same time and against the background of noise). 

The ultimate goal of most speech recognition research is speaker-
independent speech fusion recognition systems, i.e. systems that could 
understand any person and could recognize every word of ordinary speech. 
Training a computer to understand human speech and "voice" various 
synthesized messages is still an extremely tempting task. To solve it means 
to make significant progress towards the implementation of a natural user 
interface. In addition, full-scale voice interaction between a person and a 
computer will allow a completely new approach to the problem of remote 
access to databases. A person will be able to receive voice information 
synthesized from the search results in the database using his phone. The 
construction of a speech interface involves three components [75]: 

1. The first task is that the computer can "understand" what a person is 
saying to it, i.e. it must be able to extract useful information from a 
person's speech. At this stage, this task is reduced to extracting the 
semantic part of speech, the text (understanding such components as 
intonation, is not yet considered at all). 

2. The second task is to make the computer understand the meaning of 
what is said. As long as the speech message consists of a standard 
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set of commands that are understandable to the computer, there is 
nothing complicated in its implementation. 

3. The third task is that the computer can convert the information it 
operates with into a speech message that a person can understand. 

 
Of the three problems listed, a fairly clear and definitive solution exists 

only for the third. In fact, speech synthesis is a purely mathematical problem 
that is currently solved at a fairly good level and in the near future, most 
likely, only its technical implementation will be improved. 

The obstacle to the final solution of the first problem is that no one still 
knows exactly how to dissect our speech in order to extract from it those 
components that contain meaning. In the sound stream that we give out 
when talking, one cannot distinguish any individual letters or syllables. 

Speech from a physical point of view consists of a sequence of speech 
sounds with pauses between their groups. At a normal rate of speech, pauses 
appear between fragments of phrases, since the words are pronounced 
together (although the ear, as a rule, perceives the words separately). In 
slow-motion speech, such as dictation, pauses can be made between words 
and even parts of them. Prepositions and conjunctions always sound 
together with the following word. Different people pronounce the same 
speech sound in different ways, and each person has his own way of 
pronouncing speech sounds. The pronunciation of speech sounds depends 
on the accent, neighboring sounds, etc. In any language, there is a certain 
set of sounds that is involved in the formation of the sound appearance of 
words. As a rule, the sound outside of speech does not matter, it acquires it 
only as an integral part of the word, helping to distinguish one word from 
another. The elements of this set of sounds are called phonemes. However, 
with all the variety in their pronunciation, they are physical realizations 
(utterances) of a limited number of generalized speech sounds, phonemes. 
By phonemes we mean only that part of the speech signal that creates the 
sensation of the elementary sound of natural language speech [17]. 

For example, in Russian there are 42 basic and 3 indefinite phonemes. 
Speech sounds are divided into voiced and deaf ones. Ringing sounds are 
formed with the participation of the vocal cords, which in this case are in a 
tense state. Under the pressure of air coming from the lungs, they 
periodically move apart, resulting in an intermittent flow of air. The air flow 
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pulses generated by the vocal cords can be considered periodic with 
sufficient accuracy. The corresponding period of repetition of the pulses is 
called the period of the main tone of the voice (TV). The inverse of that, i.e. 
1/TV is called the pitch frequency. If the ligaments are thin and strongly 
stressed, the period is short and the pitch frequency is high; for thick, weakly 
stressed ligaments, the pitch frequency is low. The pitch frequency for all 
voices is in the range of 70-450 Hz. When speaking, the frequency of the 
main tone continuously changes in accordance with the stress and emphasis 
of sounds and words, as well as for the manifestation of emotions (question, 
exclamation, surprise, etc.). The change in the frequency of the main tone 
is called intonation. Each person has his own range of pitch changes (usually 
it is a little more than an octave) and their own intonation, which is of great 
importance for the recognition of the speaker. The basic tone, intonation, 
oral handwriting and timbre of the voice are used to identify a person, and 
the degree of reliability of identification is higher than by fingerprints. 

The formation of speech sounds occurs by giving commands to the 
muscles of the articulatory organs of speech from the speech center of the 
brain. When uttering speech sounds, either a tonal pulse signal, a noise 
signal, or both, pass through the speech apparatus. The speech tract is a 
complex acoustic filter with a number of resonances created by the cavities 
of the mouth, nose and nasopharynx, i.e. with the help of the articulatory 
organs of speech. As a result, a uniform tonal or noise spectrum turns into 
a spectrum with a number of maxima and minima. The maxima of the 
spectrum are called formants, and the zero dips are called antiformants. For 
each phoneme, the envelope of the spectrum has an individual and well-
defined shape. When speech is spoken, its spectrum continuously changes, 
and formant transitions are formed. The frequency range of speech is in the 
range of 70-7000 Hz. Voiced speech sounds, especially vowels, have a high 
level of intensity, while deaf ones have the lowest level. When speech is 
spoken, its volume changes continuously. It changes especially sharply 
when uttering explosive sounds of speech. The dynamic range of speech 
levels is in the range of 35-45 dB. Vowel sounds of speech have an average 
duration of about 0.15 seconds, consonants-about 0.08 seconds (the sound 
of "п" ["p"] – about 30 ms). 

Speech sounds are not equally informative. Thus, vowel sounds contain 
little information about the meaning of speech, and deaf consonants are the 
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most informative. Therefore, speech intelligibility is reduced by the action 
of noise, primarily due to the masking of deaf sounds. 

Almost all information about speech sounds is contained in the spectral 
envelope of speech and its temporal change (part of the information about 
speech sounds is contained in the transitions from the tonal spectrum to the 
noise spectrum and back – these transitions are used to learn about the 
change of ringing sounds to deaf sounds and back). All these changes occur 
slowly (in the pace of speech) [26]. In the perception of speech by a person, 
the mechanisms of associative analysis are used, while the sounds heard are 
not just analyzed and compared, but phonemes are collected into verbal 
images, the most suitable ones are selected not only by sound similarity, but 
also by intonation, emotional coloring, the context of the word, phrase, 
sentence and the entire text. Therefore, a person is able to recognize speech 
even with a large lack of carrier information. For example, a person is more 
demanding on the sound quality when listening to speech in a foreign 
language, with poor knowledge of it, than when perceiving native speech. 

Humans can easily distinguish words by understanding the context in 
which they are spoken, whereas for computer systems to distinguish such 
close sets of sounds it is almost an unsolvable task. 

To improve the reliability of speech recognition in conditions of a small 
signal-to-noise ratio, with a large volume of the dictionary, or in situations 
where it is necessary to work without pre-tuning to the speaker, attempts are 
made to use additional (non-speech) information about the speaker during 
recognition. Thus, the following types of information are used: visual 
information about the movement of the speaker's lips and jaw, entered into 
a computer using a video camera; information about the speaker's location, 
obtained using a video camera and used to orient the directional 
microphone; information about the movement of the speaker's lips and jaw, 
entered by cheaper methods (for example, using a reflective photo sensor); 
information about the speaker's emotional state (skin-galvanic reaction), 
used to refine the results of speech recognition; use of the bone conduction 
sound channel; registration of exhaled air. 

The speech recognition system consists of two parts. These parts can be 
allocated into blocks or subroutines. The speech recognition system consists 
of an acoustic and a linguistic part [28, 75]. The linguistic part may include 
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phonetic, phonological, morphological, syntactic, and semantic models of 
the language. 

The acoustic model is responsible for the representation of the speech 
signal. The linguistic model interprets the information received from the 
acoustic model and is responsible for presenting the recognition result to the 
consumer. 
 
3.1.1 Acoustic model 

 
Both approaches have their advantages and disadvantages. When 

developing technical systems, the choice of approach is of paramount 
importance. There are two approaches to building an acoustic model: 
inventive and bionic. The first one is based on the results of the search for 
the mechanism of functioning of the acoustic model. In the second 
approach, the developer tries to understand and simulate the operation of 
natural systems. The acoustic signal processing sequence includes these 
steps: 

1. Convert the input speech signal into a set of acoustic parameters. 
Typically, the audio signal is divided into windows of the same 
length and converted to the frequency domain using a discrete 
Fourier transform or a more complex transformation, after which 
the frequency parameters are factorized to reduce the dimension. 

2. Reduction of the acoustic waveform to the internal alphabet of the 
reference elements. If the dictionary of the recognition system 
contains a larger number of words, in order to save memory, it is 
advisable to consider not words, but the corresponding phonemic 
elements as the standards of the recognition system. The set of such 
reference elements forms a phonetic codebook. 

3. Recognize a sequence of phonemes and convert it to text. After 
determining the probable sequence of reference elements in the 
input signal, it is necessary to restore an unknown sequence of 
phonemes, which is a transcription of one of the words of the 
dictionary. This problem is solved using the method of dynamic 
programming, when at each moment the most probable expected 
sequence of phonemes in the signal from the beginning of the word 
to this moment is determined. If the acoustic parameters are 
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converted to probabilistic ones using a codebook, and the 
transcription standards of words are set in the form of probabilistic 
automata, hidden Markov chains (HMM) are usually used for 
recognition [77]. The use of HMM for speech recognition is based 
on the following provisions: 
 
a) Speech can be divided into segments (states), within which the 

speech signal can be considered stationary. The transition 
between these states is instantaneous. 

b) The probability of the observation symbol generated by the 
model depends only on the current state of the model and does 
not depend on the previous generated symbols. In fact, neither 
of these two assumptions is true for the speech signal. 
Nevertheless, standard HMMs are the basis for most modern 
speech recognition systems [26, 28]. 

 
In the case of setting word standards in the form of a sequence of 

acoustic parameter values without using a code book (usually for small 
dictionaries), a different model of speech recognition is used: dynamic 
programming, called dynamic time warping. 
 
3.1.2 Linguistic model 

 
The linguistic block is divided into the following levels: phonetic, 

phonological, morphological, lexical, syntactic, and semantic. All tiers are 
a priori information about the structure of natural language, and as known, 
any a priori information about the subject of interest increases the chances 
of making the right decision. Natural language carries highly structured 
information, which means that each natural language may require its own 
unique linguistic model. In accordance with this model, at the first – 
phonetic-level, the input (for the linguistic block) representation of speech 
is converted into a sequence of phonemes as the smallest units of the 
language. It is generally assumed that in a real speech signal, only 
allophones can be detected – variants of phonemes that depend on the 
sound environment. At the phonological level, restrictions are imposed on 
the combinatorics of phonemes (allophones). Not all combinations of 
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phonemes (allophones) occur, and those that do occur have a different 
probability of occurrence, depending also on the environment. To describe 
this situation, the mathematical apparatus of Markov chains is used. 

Further, at the morphological level, they operate with speech units of a 
higher level than the phoneme. Sometimes they are called morphemes. 
They impose a restriction already on the structure of the word, obeying the 
laws of the simulated natural language. The lexical layer covers the words 
and word forms of a particular natural language, i.e. the vocabulary of the 
language, also providing important a priori information about which 
words are possible for a given natural language. Semantics establishes 
relations between the objects of reality and the words that denote them. It 
is the highest level of language. With the help of semantic relations, the 
human intellect compresses the speech message into a system of images, 
concepts that represent the essence of the speech message. 

Hence, there is the conclusion that the system must be "smart". The 
better the model of semantic connections (the equivalent of a "mental 
image system") is constructed, the more likely it is to correctly recognize 
speech. 

Currently available speech recognition systems are based on the 
collection of all available (sometimes even redundant) information 
necessary for word recognition. Nevertheless, at present, even when 
recognizing small messages of normal speech, it is still impossible to 
perform a direct transformation into linguistic symbols after receiving a 
variety of real signals, which is the desired result. 

There is a class of understanding models, the so-called frame models 
(or a subset of them – situational models), implemented on neural network 
algorithms and using relational knowledge bases. Currently, relational 
knowledge bases are becoming increasingly popular, the essence of which 
is the existence of certain internal latent relationships that can be used 
depending on the query. Neural network algorithms are used for their 
successful implementation in understanding models. These databases are 
complex systems with hidden structures that can be used to interpret a 
particular frame. For example, such a database may contain some rules 
describing the situation, associative or semantic links. This class of 
understanding models is more promising because it implements implicit 
relationships between knowledge base elements. The appearance of new 
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information does not lead to a stoppage of the algorithm, but to the search 
for associative links due to the study of the context and can lead to the 
formation of a new frame [17]. 

These speech recognition systems can be classified according to 
different characteristics: purpose, type of speech, consumer qualities, type 
of structural unit, mechanism of functioning, and method of distinguishing 
features. 

 
By appointment, they are allocated as: 
 

• text dictation systems 
• speech-to-speech conversion systems 
• command systems 

 
According to the type of speech, there are: 
 

• recognizers of isolated words 
• merge speech recognizers 

 
According to consumer qualities, systems are distinguished as: 
 

• voice-dependent 
• voice-independent 

 
By type of structural unit: 
 

• allophone 
• phoneme 
• diphon 
• trifon 
• word 
• phrase 

 
According to the mechanism of functioning, there are: 
 

• the simplest (correlation) detectors 
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• probabilistic network models of decision-making (HMM, dynamic 
programming, neural network methods). 

 
According to the method of feature selection, there is: 
 

• spectral analysis 
• cepstral analysis 
• wavelet analysis 
• the coding of linear prediction coefficients 

 
3.2 Speech command recognition software 

 
The creation of automatic speech recognition systems is one of the most 

relevant areas of development of modern computer technologies. Currently, 
all over the world, work is underway to create more natural means of 
communication with a computer, and foremost is the speech input of 
information into a computer. The problem of speech input is complicated 
by a number of factors: the difference of languages, the specifics of 
pronunciation, noise, accents, accents, etc. Despite the fact that the first 
developments in the field of speech recognition date back to the 1920s, the 
first system was created only in 1952 by Bell Laboratories (today it is part 
of Lucent Technologies). At the moment, there are not dozens, but hundreds 
of research teams working in this direction in scientific and educational 
institutions, as well as in large corporations. This can be judged by such 
international forums of scientists and specialists in the field of speech 
technologies as ICASSP, EuroSpeech, ICPHS, etc. For a number of years, 
voice navigators, or command recognition systems, have been successfully 
used in various fields of activity. In expensive cars, such as Infinity and 
Jaguar, oral control of the control panel has been used for several years: the 
radio, temperature control and navigation system "understand" the voice of 
the owner of the car and unquestioningly listen to the owner. Voice 
recognition technology is increasingly being used in middle-class cars. 

Currently, users are far from being able to conduct a reasonable dialogue 
with the computer. However, speech recognition tools for personal 
computers (PCs) have already appeared, which have reached a level of 
development sufficient to change the way people and machines interact. The 
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simplest of modern products, capable of responding to words, allow us to 
control the execution of standard application programs in MS Windows and 
Linux systems by means of oral commands (instead of a mouse and 
keyboard). More complex systems with large dictionaries allow one to 
perform oral text input or serve as the basis for your own applied speech 
recognition systems. 

All speech recognition software products are divided into three main 
types: speech navigators, speech text input tools, and development tools. 
Among the products of these three types, navigation programs are the most 
numerous. They allow one to give verbal commands to control the 
operation of the system, for example, the launch and execution of 
application programs. So, in computers running the Windows operating 
system, one can use voice control to work with individual programs and 
groups of programs, to copy or move files, etc. A striking example is the 
IBM ViaVoice1 and Microsoft Voice2 programs. For Linux, use the 
program CVoiceControl3, which is distributed in the source code. On low-
power computers, the developers of such packages require the mandatory 
use of specialized coprocessor boards. An example of this group of 
dictation systems is the Dragon Dictate4 complex of Dragon Systems for 
MS Windows and SPHINX5 for Linux. There is a localized version of the 
Dragon Dictate program: Gorynych. 

Development tools allow us to create both universal and specialized 
application programs that use speech recognition methods. Basically, 
these systems are aimed at programmers who create programs in C++ and 
MS Visual Basic, and contain basic recognition programs, as well as 
application program interfaces (APIs) and the programming language 
libraries necessary for their use. One example is Microsoft Speech API6. 

Currently, well-known companies, such as Microsoft, IBM, Dragon 

Systems, Lernout&Hauspie, and Digalo, supply speech recognition and 
synthesis engines to the software market. The term "engine" refers to a set 
of software tools that are specially designed and optimized to perform a 
specific operation. These engines can work with all standard European 
languages: English, German, French, Italian, Spanish, etc. Support for 
Russian is still quite rare. 

Speech recognition is finding more and more new applications, ranging 
from applications that convert speech information into text, and ending with 
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on-board car control devices [11]. All the variety of existing speech 
recognition systems can be divided into the following groups: 

1. Software cores for hardware implementations of speech recognition 
systems. 

2. Sets of libraries and utilities for developing applications that use 
speech recognition. 

3. Independent user applications that perform speech control and 
speech-to-text conversion. 

4. Specialized applications that use speech recognition. 
5. Devices that perform recognition at the hardware level. 
6. Theoretical research and development. 

 
3.2.1 Software cores for hardware implementations of speech 

recognition systems 

 
At the heart of any speech technology is the so-called "engine", or the 

core of the program, a set of data and rules by which data is processed. 
Depending on the purpose of this core, the TTS and ASR engine are 
distinguished. The TTS (Text-to-Speech) engine provides text-to-speech 
synthesis, and the ASR (Automatic Speech Recognition) engine provides 
speech recognition. 

There are several major manufacturers involved in the creation of ASR 
cores, including companies such as SPIRIT, Advanced Recognition 

Technologies, and IBM. 
The modern market offers automatic speech recognition systems (ASRS) 

of various companies. 
Aculab. Recognition accuracy is 97%. It is a voice-independent system 

that supports the most common languages, such as British and American 
English, French, German, Italian, and North American Spanish. The 
dictionary can be configured for any of these languages, but it is not possible 
to use multiple languages simultaneously as part of a single dictionary. 

Babear SDK Version 3.0. It is a voice-independent system that does not 
require training for a specific user. The system supports the following 
languages: English, Spanish, German, French, Danish, Swedish, Turkish, 
Greek, Icelandic and Arabic. 
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Loquendo ASR. It is a voice-independent system optimized for use in 
telephony. It is possible to recognize individual words and speech and 
search for keywords (with a dictionary of up to 500 words). 

LumenVox. It is a voice-independent system that does not require 
training, but after adapting to a specific user, the recognition results become 
much better: the recognition accuracy exceeds 90%. 

Nuance. The system is optimized for the lowest consumption of memory 
and other system resources. The recognition accuracy is up to 96%, and 
remains high even in a noisy room. There is a possibility of self-learning of 
the system and its adjustment for each user. 

SPIRIT. The SPIRIT ASR Engine speech recognition system is designed 
for a wide range of practical tasks. Such tasks include, for example, the 
organization of an automatic call center (voice control of the menu system, 
dialing a PIN code and phone number), security systems, voice control 
systems, etc. The system is capable of real-time voice-independent 
recognition of chains of spoken words and individual speech commands, 
including in noise conditions with a signal-to-noise ratio of up to +5 dB. 

In the SPIRIT ASR Engine system, both well-known solutions, such as 
HMM, and non-standard approaches were implemented, which 
significantly increased the reliability of recognition in real acoustic 
conditions. The use of HMM is currently the most popular and successfully 
applied approach to the problem of speech recognition. Standard HMMs are 
the basis for most modern speech recognition systems. 

SPIRIT develops software for digital telephony, speech compression, 
speaker identification, VoIP and GPS technologies. SPIRIT's ASR engine is 
designed for speech command recognition and is used in various 
applications, such as voice control of devices, voice dialing in hands-free 
devices, and entering personal identification codes (PINS) in security 
systems. This core is built into any DSP or RISC platform and is delivered 
as object code. 

VoiceWare. The system can work in both voice-dependent and voice-
independent modes, so special training of the system for working with a 
specific user is not required. VoiceWare supports English and Korean. 

IBM Corporation has been working on automatic speech recognition for 
more than 30 years and has achieved great success in this field. So, the 
company "ProVox Technologies" based on the software core ViaVoice® 
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from IBM has created a system for dictating reports of radiologists 
VoxReports. According to the results of testing, this system with an 
accuracy of 95-98% recognizes the combined speech of a normal tempo (up 
to 180 words per minute), regardless of the speaker. However, the system's 
vocabulary is limited to a set of specific medical terms. 

There is an agreement between Opera Software and IBM on the 
integration of Embedded ViaVoice speech recognition technology into 
Opera browsers. Using Embedded ViaVoice will allow users to control the 
browser not only with the mouse and keyboard, but also with their voice. 

Speech recognition technology is increasingly used in mobile 
communications. So, the company "Advanced Recognition Technologies" 
has created a smARTspeak NG system that is embedded in mobile phones. 
Currently, the smARTspeak NG system is used in non-keyboard phones of 
Siemens, Panasonic phones of the TDMA standard in the United States and 
other countries. 

Sakrament ASR Engine is a software development of the Belarusian 
company "Sacrament", designed for use in various hardware systems and 
software applications that use speech recognition technologies. Declared 
characteristics: recognition accuracy of 95-98%; voice independence; 
language independence; recognition of merged speech in the form of 
expressions and small sentences. However, there is no possibility of training 
in this system – additional dictionaries are created by order of the company 
"Sacrament" itself [81, 88, 91]. 
 
3.2.2 Sets of libraries, utilities for developing applications that use 

speech recognition 

 
With the development of speech technologies and the increasing 

adoption of mobile devices, the idea of using speech control in building 
network applications arose. To do this, it was necessary to develop a unified 
standard for the integration of speech technologies. 

One of the open standards based on the XML language-VoiceXML (Voice 

eXtensible Markup Language), the first version was published in May 2000 
by the international World Wide Web Consortium (W3 Consortium) – is 
intended for the development of Interactive Voice Response (IVR) 
applications for managing media resources. The purpose of creating the 
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standard is to use all the advantages of web programming in the 
development of IVR applications. 

Various companies are developing packages for creating speech 
applications, the so-called Software Development Kit (SDK), that support a 
particular standard. For example, Philips has created the Speech SDK. This 
package supports the VoiceXML specification and is designed to 
communicate with the C/C++ API. 

CompTek and Philips jointly created SpeechPearl, a product that is a set 
of software modules, libraries, and utilities for developing speech recognition 
systems with Russian support for phone applications [63, 78, 82, 86, 105]. 
 
3.2.3 Devices that perform recognition at the hardware level 

 

To use speech recognition functions in various devices, robots, and 
toys, hardware methods for solving this problem are being developed. 
For example, the American company "Sensory Inc" has developed the 
Voice Direct™364 integrated circuit, which performs voice-dependent 
recognition of a small number of commands (about 60) after preliminary 
training. Before starting operation, the module must be trained in all the 
commands used in the work [77, 89]. 
 

3.2.4 Theoretical research and development 

 

Many research groups around the world are engaged in the development 
of the theoretical basis in the field of speech technologies. First of all, these 
are large corporations such as IBM, Intel, Microsoft, and AT&T. These 
companies have been engaged in the theory of recognition for more than a 
decade and are recognized authorities in this field. From all the variety of 
scientific developments, we will consider in detail the work of domestic 
research groups. 

The Laboratory of Automated Queuing Systems of the Institute of 
Management Problems of the Russian Academy of Sciences has been 
conducting research in the field of speech recognition for more than 30 
years. The main scientific and practical direction of the laboratory's activity 
is currently the use of computer recognition of merged speech in public 
service systems with the possibility of using Russian and other languages. 
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Mathematical models have been developed to describe the processes in 
speech recognition systems. 

The Institute of System Analysis of the Russian Academy of Sciences is 
engaged in research in the field of speech recognition, which is focused on 
solving the following tasks: the development of the theoretical base, the 
development and software implementation of methods for automatic 
analysis of speech signals in real time. The principal novelty of the proposed 
directions consists of the use of the island neural network analysis of the 
speech signal in correlation with the allocation of stable features and the 
application of phonological and other "engineering" knowledge (i.e. the use 
of speech signals) and knowledge based on a meaningful study of the 
process of utterance or the process of perception about the fine structure of 
the speech signal. 

Since 1996, "СТЭЛ–Компьютерные Системы" ["Stel - Computer 
Systems"], in cooperation with leading specialists of the Faculty of 
Philology of the Lomonosov Moscow State University, the Computing 
Center of the Russian Academy of Sciences and a number of other 
organizations, has been implementing a project to create a prototype of a 
voice-independent system for recognizing Russian speech. From a 
methodological point of view, the project is based on the application of 
modern methods of speech signal processing and the HMM apparatus for 
describing the phonetic and semantic-syntactic patterns of Russian [62, 77, 
78, 79, 80, 83, 84, 85, 86, 87, 89, 90, 92]. 

Developers of speech recognition systems face the various tasks. The 
most popular approach in recent years is based on the priority of solving 
applied problems. The popularity of this approach is determined by the 
active development of the market of so-called speech technologies, i.e. 
systems for automatic speech recognition, synthesis and compression. At 
the same time, natural science knowledge about the object under study is 
replaced by utilitarian goals. The corresponding utilitarian approach has a 
right to exist, but, of course, has nothing to do with science. The most 
promising areas of use of speech technology devices are related to their 
interaction with a person and require, in fact, the repetition in the 
technological system of the methods of working with speech, speech 
information used by a person. 
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We can give several examples of the use of methods in speech 
technologies that are quite effective, but lead science away from actual 
knowledge. In the field of automatic recognition, such an example is the use 
of HMM. It is obvious that speech communication is built according to 
some rather complex rules, about which we do not know everything, or 
rather, we know very little. Using a probabilistic model (HMM) is an 
attempt not to learn these rules, but to replace them with random iteration. 
The disadvantages of this method are obvious: the lack of noise immunity, 
the need for large statistics [88]. 

At the moment, the most difficult elements in the construction of a 
speech recognition system are not recognizing algorithms, their detailed 
descriptions can be found in monographs and patents, and the construction 
of an acoustic model of the language and the initial training of standards of 
dictionary words, most often probabilistic Markov automata. As a rule, to 
build a reliable model of a particular language from a probabilistic point of 
view, it is necessary to conduct long-term work of large teams to collect and 
analyze the acoustic data of a huge number of native speakers of a given 
language. It is necessary to carefully consider all types of voices and accents 
available to native speakers, and for each variety of voice and accent to get 
a reliable assessment of the elements of the code book of this language. An 
equally difficult task is the construction of word standards. To do this, it is 
necessary that each word of the dictionary (and there can be about 100,000 
of them) is pronounced by each representative of this type of speaker several 
dozen times, otherwise the resulting probabilistic automaton will be 
statistically unreliable. 

Finally, for the successful application of syntactic and semantic 
dependencies between the words of sentences, it is necessary to build some 
grammar that reflects the structure of the sentences of the language to some 
extent. In connection with the above, there is a need to transfer computer 
speech recognition systems, currently working mainly on models of 
languages of the Germanic group (English, German, French, Italian, etc.), 
to other groups of languages, such as Slavic or Asian. In fact, the developers 
of recognition systems face the task of building such systems anew, almost 
from scratch, since the lion's share of time and money in the development 
of a new system falls on the process of building a reliable acoustic model, 
word standards and language grammar. Russian recognition systems will 
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not only have to build a new acoustic model and train a dictionary of the 
most commonly used Russian words, but also to build models of Russian 
grammar, which, as it is easy to assume, will be an order of magnitude more 
complex than the trigram model, which is now used to set the grammar of 
English. It is because of this that there is no decent dictation system for 
Russian texts on the market and it is unlikely to appear in the near future. 
Working on its construction requires too much financial investment [19]. 
 
3.3 Extraction of phoneme information features using fast continuous 

wavelet transform 

 

To study the speech signal, we use wavelets based on the Gaussian 
derivative. To record, display, play, edit samples and save them to a text 
file, use the audio editor: the sampling rate of the acoustic signal is 8000 
Hz, the resolution is 16 bits, and the recording mode is mono. The stored 
data is used to convert the studied signal 𝑆(𝑡) to the wavelet spectrum 
𝑊(𝑎, 𝑏). The duration of the speech signal is four seconds. 

To calculate the wavelet spectrum of a speech signal, the formula of the 
continuous wavelet transform is used 
 

𝑊(𝑎, 𝑏) =
1

√𝑎
∑ 𝑆(𝑡)

∞

−∞

𝜓 (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 

 

The Fourier transform is used to calculate the Fourier spectrum of the 
wavelet spectrum segments 
 

𝐹(𝜈) = ∫ 𝑓(𝑡)

∞

−∞

𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡 

 

The following algorithm is used to form phoneme standards. The 
wavelet coefficients of 𝑊(1, 𝑏), 𝑊(2, 𝑏), 𝑊(4, 𝑏), 𝑊(6, 𝑏), 𝑊(8, 𝑏), 

𝑊(20, 𝑏), and 𝑊(50, 𝑏) words are calculated, where 𝑏 varies from 1 to 
32768. The resulting wavelet coefficients (functions) 𝑊(1, 𝑏), 𝑊(2, 𝑏), 

𝑊(4, 𝑏), 𝑊(6, 𝑏), 𝑊(8, 𝑏), 𝑊(20, 𝑏), and 𝑊 (50, 𝑏) are divided into 
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segments of fixed duration (𝑛 =  128), which corresponds to 16 ms. The 
number of segments is 256. The duration of the segment is not less than 
the duration of the pronunciation of phonemes, but exceeds the maximum 
possible period of the main tone of the phonemes. The wavelet coefficients 
are calculated for a sampled and level-quantized speech signal, so a 
discrete version of the continuous wavelet transform is used to calculate 
the wavelet spectrum [31]. 

Figures 3.3.1 and 3.3.2 show two segments of the function 𝑊(3, 𝑏) of 
the phoneme "a" and "э" ["e"]. 
 

 
Figure 3.3.1. Two segments of the function 𝑊(3, 𝑏) of phoneme "a" 

 

 
Figure 3.3.2. Two segments of the function 𝑊(3, 𝑏) of the phoneme "э" 

 
The wavelet spectra 𝑊(𝑎, 𝑏) of the speech signal were tested by ear. To 

listen to the wavelet spectra 𝑊(𝑎, 𝑏), an algorithm is used that includes the 
following steps: 

1. The maximum of the function 𝑊(𝑎, 𝑏) is found in the observation 
window. 
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2. The function 𝑊(𝑎, 𝑏) is normalized. 
3. The normalized function is multiplied by a number that is acceptable 

in terms of volume. 
4. The resulting function is rounded to integers and submitted for 

listening. 
 

Listening to the wavelet spectra 𝑊(1, 𝑏),  𝑊(2, 𝑏), 𝑊(4, 𝑏), 𝑊(6, 𝑏), 
𝑊(8, 𝑏), 𝑊(20, 𝑏) and 𝑊(50, 𝑏) shows that they sound almost identical to 
the acoustic signal 𝑆(𝑡) under study. For example, the function 𝑊(3, 𝑏) of 
phoneme a sounds like phoneme a with a different timbre. The wavelet 
spectrum of words and sentences, sounds similar to the original word or 
sentence. Here we see that even with a very strong change in the form of 
the speech signal, we can hear and distinguish phonemes and words. 
Apparently, the hearing does not respond to the shape of the signal, but to 
the number of vibrations over a certain period. Therefore, compression of 
the acoustic signal by tens of times is quite possible. When the scale factor 
is increased to more than 20 units for a sample of 32,768 samples, each 
phoneme loses its identity and sounds like the phoneme "у". In each 
segment, the Fourier coefficients 𝑑(𝑖), 𝑒(𝑖) of the functions 𝑊(1, 𝑏) and 
𝑊(2, 𝑏) are calculated using the FFT. The simplest weight function is used 
(window) Dirichlet. The effect on the spectrum of other weight functions 
(Hamming, Bartlett, Hanna, etc.) was not considered. Thus, an adequate 
mathematical model of the speech signal in the segment is: 
 

𝑑(𝑛) =
1

𝑀
∑ 𝑊

𝑀−1

𝑘=0

(𝑎, 𝑘) cos (
2𝜋𝑛𝑘

𝑀
) 

𝑒(𝑛) =
1

𝑀
∑ 𝑊

𝑀−1

𝑘=0

(𝑎, 𝑘) sin (
2𝜋𝑛𝑘

𝑀
) 

 
Substituting the result of the inverse Fourier transform of the complex 

conjugate spectrum of the speech signal and the wavelet instead of the 
wavelet spectrum, we obtain 
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𝑑(𝑛) =
1

𝑀
∑ (∑ (𝑐1(𝑗) + 𝑖𝑐2(𝑗) exp (𝑖

2𝜋𝑘𝑗

𝑁
)) cos (

2𝜋𝑘𝑗

𝑁
)

𝑁−1

𝑗=0

)

𝑀−1

𝑘=0

 

𝑑(𝑛) =
1

𝑀
∑ (∑ (𝑐1(𝑗) + 𝑖𝑐2(𝑗) exp (𝑖

2𝜋𝑘𝑗

𝑁
)) sin (

2𝜋𝑘𝑗

𝑁
)

𝑁−1

𝑗=0

)

𝑀−1

𝑘=0

 

 
By the formula 

𝐹(𝑖) = 𝑑2(𝑖) + 𝑒2(𝑖) 
 
the Fourier spectrum of the functions 𝑊(1, 𝑏), 𝑊(2, 𝑏) of the phonemes of 
the Russian alphabet is calculated. Figures 3.3.3, 3.3.4 show the Fourier 
spectra of the segments of the function 𝑊(1, 𝑏) of phonemes "a" and "э". 
 

 
Figure 3.3.3. Fourier spectrum of the function 𝑊(1, 𝑏) of phoneme "a" 

 

 
Figure 3.3.4. Fourier spectrum of the function 𝑊(1, 𝑏) of the phoneme "э" 
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The sounds (phonemes) selected from the words are examined 
separately. Usually, if the spectrum of an audio signal is found without 
using WT, the resulting spectrum undergoes various transformations, for 
example, a logarithmic change in scale (both in the amplitude space and 
in the frequency space). This allows us to take into account some features 
of the speech signal – a decrease in the information content of high-
frequency sections of the spectrum, the logarithmic sensitivity of the 
human ear, etc. Since the low-frequency region contains more 
information than the high-frequency region, this reduces the number of 
parameters that receive information from the high-frequency region. Or 
it compresses the high-frequency region of the spectrum in the frequency 
space. The most common method is logarithmic compression 
 

𝑚 = 𝑓max log(𝑘𝑓 + 1) 
 
where 𝑓 is the frequency in the spectrum, Hz, 𝑘 is the compression ratio, 
and 𝑚 is the frequency in the newly compressed frequency space [31]. 

In this monograph, the spectrum was not compressed, because at WT 
of the speech signal for small scale coefficients, the information content 
is also large for the high-frequency region of the spectrum. A flowchart of 
the algorithm for forming a phoneme database is shown in Figure 3.4.7.3. 
For the phonemes of the Russian alphabet, a database is created with a set 
of characteristic frequencies (range) of the function segments 𝑊(1, 𝑏), 
 𝑊(2, 𝑏), 𝑊(4, 𝑏), 𝑊(6, 𝑏), 𝑊(8, 𝑏), 𝑊(20, 𝑏) and 𝑊(50, 𝑏). Also, as a 
characteristic feature, the fractal dimension of phonemes is used, which is 
accepted as certain frequencies. The lower and upper limits of the range 
of characteristic frequencies obtained by repeated pronunciation of 
Russian words are used as phoneme standards for speech recognition. It is 
possible to update (expand the frequency range) the database with 
phoneme standards so that speech sounds are distinguished when new 
words are added to the dictionary (a database of individual words), i.e. a 
system-training algorithm is developed. To identify the elements of 
speech, the following algorithms for comparing the acoustic signal with 
phoneme standards are studied. 

The central frequencies, the average energies of the normalized 
spectrum of the segments of the functions 𝑊(1, 𝑏) and 𝑊(2, 𝑏) are 
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calculated for the intervals 0-20, 21-64, 0-64 Hz (in conventional units) 
using the formulas 
 

𝜈 =
∑ 𝑖𝑛

𝑖=1 𝐹(𝑖)

∑ 𝐹(𝑖)𝑛
𝑖=1

 

𝐸 =
∑ 𝐹(𝑖)𝑛

𝑖=1

𝑛
 

 
In the sliding mode, the number of local maxima of the functions 

𝑊(3, 𝑏), 𝑊(7, 𝑏) in the segment and the average number of local maxima 
in the segment are calculated. 

Due to the fact that the number of local maxima of the functions 
𝑊(3, 𝑏), 𝑊(7, 𝑏) in the segment does not depend on the shift for the 
stationary signal, but on which phoneme is currently present in the acoustic 
signal, the calculation of local maxima is similar to dynamic spectral 
analysis. The only difference is that the execution time of this algorithm is 
many times less than the spectral processing with an observation step equal 
to one. The block diagram of the phoneme identification device is shown in 
Figure 3.4.7.4. The algorithm for identifying phonemes is basically similar 
to the algorithm for forming a database of phonemes, they differ only in the 
last block, where the phonemes of the studied speech signal are compared 
with the standards of the phonemes of the database. 

Phoneme "a" is identified in segments using the following algorithm: 
 
for i = 1 to n 
b = 11 
if (x(i, 1)  ≥ u(b, 1)) and (x(i, 1)  ≤  u(b, 2)) and 

(x(i, 2)  ≥  u(b, 3)) and (x(i, 2)  ≤  u(b, 4)) and 

(x(i, 3)  ≥  u(b, 5)) and (x(i, 3)  ≤  u(b, 6)) and 

(x(i, 4)  ≥  u(b, 7)) and (x(i, 4)  ≤  u(b, 8)) and 

(x(i, 5)  ≥  u(b, 9)) and (x(i, 5)  ≤  u(b, 10)) and 

(x(i, 6)  ≥  u(b, 11)) and (x(i, 6)  ≤  u(b, 12)) and 

(x(i, 7)  ≥  u(b, 13)) and (x(i, 7)  ≤  u(b, 14)) and 
(x(i, 8)  ≥  u(b, 15)) and (x(i, 8)  ≤  u(b, 16)) then 

x10(i, 1) = chrW(1072) '/ A 
end if 
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. . . . . 

next i 

 

where 𝑥(𝑖, 1),  𝑥(𝑖, 2), …, 𝑥(𝑖, 8) – characteristic features of phonemes in 
the 𝑖-th segment, 𝑢(𝑏, 1), 𝑢(𝑏, 3), …, 𝑢(𝑏, 15) – lower limit of the 
frequency range of phoneme standards, u(b, 2), 𝑢(𝑏, 4), …, 𝑢(𝑏, 16) – 

upper limit of the frequency range of phoneme standards, x10(i, 1) – 

phoneme a in the 𝑖-th segment, 𝑛 – number of segments, 𝑏 – phoneme 
sequence number. 

Similarly, the remaining phonemes are allocated in segments and stored 
as a table in the array 𝑥10(𝑖, 𝑏). 

The averaged, smoothed spectrum of segments of the function 
𝑊(1, 𝑏) is used as a phoneme reference. The measure of similarity 
(difference) is the Euclidean distance between the reference spectrum of 
phonemes and the spectra of the acoustic signal segments 
 

𝑑𝑖𝑗 = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑛

𝑘=1

 

 
The calculated distance values for each segment and each phoneme are 

stored as a table in a two-dimensional array for further processing. 
The measure of the difference is a measure of the type of correlation 

between the reference spectrum of phonemes and the spectra of speech 
signal segments – the Pearson correlation coefficient. 

In each segment, the Fourier spectrum of the function 𝑊(1, 𝑏) is 
normalized and compared with the reference phoneme spectra, and the 
result is stored in a two-dimensional array. 

The mutual correlation function of the wavelet spectrum of the acoustic 
signal and the standards of vowel sounds of speech is calculated. The 
cross-correlation function is defined by the expression 
 

𝑅𝑥𝑦(𝜏) =
1

𝑇
∫ 𝑥(𝑡)

𝑇

0

𝑦(𝑡 + 𝜏)𝑑𝑡 
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The maximum values of the correlation function are used to determine 
the vowel phonemes in the speech signal. 

One of the main factors that negatively affect the recognition of 
phonemes is the variability of speech, which manifests itself in differences 
in the utterance of the same word or sentence. Most phoneme recognition 
errors are caused by random nonlinear deformations of the phoneme 
spectrum shape and temporary non-stationarity. Therefore, it is difficult to 
form phoneme standards for a large database of words (a dictionary). One 
of the ways to ensure invariance to the utterance feature is the WT of the 
speech signal. WT allows us to separate the low-frequency features of the 
signal from the high-frequency ones, and as a result, the range of spectral 
uncertainty is reduced. Experimental studies show that phoneme standards 
based on the WT speech signal have better recognition qualities. 

The algorithm for forming a standard and recognizing phonemes using 
the correlation coefficient is better than the algorithm for finding the 
Euclidean distance. It should be noted that the second algorithm is less 
flexible than the first, because it uses 60 parameters for recognition and it is 
difficult to update the phoneme reference. The fourth algorithm is only 
useful for working with vowel phonemes. Therefore, the algorithm of word 
formation for the first algorithm of standard formation and phoneme 
recognition is considered below. 
 
3.4 Highlighting the border between vowel and consonant phonemes in 

speech and recognizing isolated words 

 

One of the main difficulties in recognition is the indefinite temporal 
organization of the speech signal. Obviously, the accuracy of word 
recognition significantly depends on the accuracy of determining the 
boundaries of phonemes. Determining the boundaries of phonemes means 
the operation of expedient division of speech into fragments, i.e. the 
segmentation of speech, which, in accordance with phonetic transcription, 
is a fundamental task of the voice control system. All further speech 
processing depends fundamentally on the accuracy of determining the 
boundaries of speech. The Parseval formula is used to calculate the energy 
of phoneme segments 
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∫ 𝑓2(𝑡)

∞

−∞

𝑑𝑡 = ∫ |𝐹(𝜈)|2

∞

−∞

𝑑𝜈 

 

The continuous wavelet transform formula is used to calculate the 
segment energy wavelet spectrum. To determine the boundaries between 
the vowel and consonant letters of a word, the energy of the segments of the 
functions 𝑊(2, 𝑏), 𝑊(20, 𝑏) and the studied word 𝑆(𝑡) is calculated. We 
obtain the Fourier spectrum of the segments of the functions 𝑊 (2, 𝑏), 

𝑊(20, 𝑏), and 𝑆(𝑡). The energy of the segments is calculated by the 
formula 
 

𝐸 = ∑ 𝐹(𝑖)

𝑛

𝑖=1

 

 

Calculating the energy of the segments by the formula is almost the same 
as finding the variance of the wavelet coefficients by the standard formula 
 

𝜎(𝑎) = ∑(𝑊(𝑎, 𝑖) − 〈𝑊(𝑎, 𝑏)〉)2

𝑛

𝑖=1

 

where 

〈𝑊(𝑎, 𝑏)〉 ≥ ∑
𝑊(𝑎, 𝑖)

𝑛

𝑛

𝑖=1

 

 

is the average value of the wavelet coefficients in the segment. 
 

Using the energy of the segments when summing all the frequencies 
is equivalent to using the variance of the wavelet coefficients since the 
average value of the wavelet coefficients in the segment is close to zero. 
The positive and negative values of the wavelet coefficients are almost 
the same, and therefore the average value of the wavelet coefficients in 
the segment is close to zero (Fig. 3.4.1, 3.4.2). However, the energy can 
be calculated for different frequency ranges and more information can 
be obtained. As a result, the number of calculations is reduced. 
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Figure 3.4.1. Energy of the 𝐸3(𝑛) segments of the word "осень" ["autumn"] 
 

 

Figure 3.4.2. Energy of segments 𝐸1(𝑛) of the function 𝑊(1, 𝑏) of the word "осень" 

 

We denote the energy of the segments WT 𝑊(2, 𝑏), 𝑊(20, 𝑏) and the 
word 𝑆(𝑡) under study by functions 𝐸1(𝑛), E2(n) and 𝐸3(𝑛), respectively, 
where 𝑛 varies from 1 to 256. Figure 3.4.1 shows the energy of the 𝐸3(𝑛) 
segments of the word "осень". Figure 3.4.2 shows the energy of the 
segments 𝐸1(𝑛) of the function 𝑊(1, 𝑏) of the word "осень". When 
comparing the figures, we can immediately see the difference between the 
functions 𝐸1(𝑛) and 𝐸3(𝑛). The results of the analysis show that the energy 
of the segments of vowel letters in 𝑊(1, 𝑏), 𝑊(2, 𝑏) is allocated as 
maximum peaks, and the energy of consonant letters is always lower than 
the energy of vowels. The energy of the segments of hissing letters in 𝐸1(𝑛) 
is allocated as maximum peaks, in 𝐸2(𝑛) and 𝐸3(𝑛) as minima. 
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In order to determine the location of phonemes in a word, WT is 
calculated by the function 𝐸1(𝑛), 𝐸2(𝑛), and 𝐸3(𝑛) with a scale factor of 
𝑎 = 4. 

Thus, the mathematical model of the speech signal when finding the 
boundaries between vowels and consonants of speech sounds is the 
wavelet spectrum of the energy of the segments of the wavelet spectrum 
of the speech signal. The coefficient a can vary from 3 to 8. We denote 
them by the functions 𝑊1(4, 𝑏), 𝑊2(4, 𝑏) and 𝑊3(4, 𝑏), respectively, 
where 𝑏 varies from 1 to 256. The block diagram of the algorithm for 
determining the boundary between vowel and consonant phonemes in a 
speech signal is shown in Figure 3.4.7.5. 

Figure 3.4.3 shows the result WT of the function 𝐸2(𝑛) of the word 
"сигнал" ["signal"], where the positive values of the function 𝑊2(4, 𝑏) 
correspond to vowels, and the negative values correspond to consonants. 
 

 

Figure 3.4.3. The wavelet spectrum 𝑊2(4, 𝑏) of the function 𝐸2 (𝑛) of the word 
"сигнал" 

 

According to the results of the WT, it was found that vowel letters always 
have a positive value in 𝑊1(4, 𝑏), 𝑊2(4, 𝑏) and 𝑊3(4, 𝑏). Sibilant 
consonants have a negative value in the function 𝑊2(4, 𝑏) and 𝑊3(4, 𝑏). 
Some sibilant letters have a positive value in 𝑊1(4, 𝑏). Therefore, to find the 
location of vowel letters, the energies 𝐸2(𝑛), 𝐸3(𝑛) are normalized, their sum 
is found, and WT 𝑊4(4, 𝑏) is performed. Thus, if a word contains one vowel 
letter, then one positive maximum is allocated, if two vowel letters, two 
positive maxima, etc. Each word has a certain structure. The boundary between 
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vowels and consonants, or between vowels and sibilants, is determined with an 
accuracy of 2-3 segments [37, 39, 40, 41, 44, 45, 47, 48]. 

To form a word, the number of recognized phonemes a is counted in the 
interval where the vowel letters are highlighted. Similarly, for other vowel 
letters, the number of recognized letters is found separately. 

The three vowel sounds for which these numbers are the largest are 
determined and written in descending order in the string array 𝑥(1, 𝑖), 

𝑥(2, 𝑖), 𝑥(3, 𝑖), in order to later use them for comparison with the letters of 
words from the dictionary. In the same way, three consonants of non-hissing 
or hissing sounds are counted and selected in the interval where the 
consonants of non-hissing or hissing sounds are highlighted. 

Figure 3.4.4 shows a fragment of the section where the "u" phoneme is 
and stands out more than the others. 
 

 
Figure 3.4.4. Fragment of the vowel letters section 

 

Phonemes are written to Excel electronic cells from the string array 
𝑥10(𝑖, 𝑏), so that we can visually observe how the recognition process 
occurs at different stages and also to train the system when entering new 
words into the dictionary. The block diagram of the word formation 
algorithm is shown in Figure 3.4.7.5. 

Depending on the number of positive maxima in the function 𝑊4(4, 𝑏), 
different algorithms are selected for comparing the studied word with the 
words in the database. If one positive maximum is selected, an algorithm is 
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used to find the boundary between vowel and consonant phonemes for three 
phonemes. If two positive maxima are distinguished, then an algorithm is 
used to find the boundary between vowel and consonant phonemes for five 
phonemes, etc. 

The interval for counting consonants is chosen wider to take into account 
the error of determining the boundaries of these letters, words are made up 
of these letters. Letters such as "м", "н", "л" ["m", "n", "l"] have almost 
identical features, so a dictionary is used to identify words to check for the 
presence of composed words in the word database. Words consisting of 
three letters are compared with words in the dictionary using the following 
algorithm: 
 
for i = 1 to n 

if (𝑥(1, 1) = 𝑥10(𝑖, 1) or 𝑥(2, 1) = 𝑥10(𝑖, 1) or 𝑥(3, 1) = 𝑥10(𝑖, 1)) 

and (𝑥(1, 2) = 𝑥10(𝑖, 2) or 𝑥(2, 2) = 𝑥10(𝑖, 2) or 𝑥(3, 2) = 𝑥10(𝑖, 2)) 

and (𝑥(1, 3) = 𝑥10(𝑖, 3) or 𝑥(2, 3) = 𝑥10(𝑖, 3) or 𝑥(3, 3) = 𝑥10(𝑖, 3)) 
then 

for j = 1 to 7 

if (𝑦10(𝑖, 𝑗) = 0) then exit for 

.cells(153, 55 + j).value = 𝑦10(𝑖, 𝑗) 

.cells(155, 55).value = i 

next j, 

else 

.cells(154, 55).value = 0 

end if 

next i 

 
where 𝑥(1,1), 𝑥(2,1), 𝑥(3,1) – the first, second, and third vowel letters, 
respectively, 𝑥(1,2), 𝑥(2,2), 𝑥(3,3) –the first, second, third consonant is 
not a sibilant or sibilant letter, respectively, 𝑥(1,3), 𝑥(2,3), 𝑥(3,3) –the 
first, second, and third vowel letters, respectively, 𝑥10(𝑖, 1), 𝑥10(𝑖, 2), 
𝑥10(𝑖, 3) – the first, second, and third letters of the 𝑖-th word in the 
dictionary. 

Since the pronunciation of words is very much contextually dependent 
on the spelling, the word is written in the dictionary as pronounced, and 
the output as correctly spelled. Moreover, in the database of words, we can 
store different versions of the pronunciation of one word. 
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For example, the word "яма" ["hole"] can be written in the dictionary 
in four variants: "яма", "амя", "яла", "ена" in the string array 𝑥10(𝑖, 𝑗). 
For all these combinations of letters, the letters "я", "м", "а" are stored in 
the string array 𝑦10(𝑖, 𝑗), i.e. for 𝑖 – 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, because there are 
no Russian words "амя", "яла", "ена". Phonemes "а" and "я" have almost 
the same features while phonemes "н", "л", "м" differ little from each 
other. Encoding a single "яма" word with multiple variants increases the 
probability of recognizing that word. Other words in the dictionary are 
also stored in several variants. The recognized word can also be output in 
another language. 

A similar algorithm is used to recognize words consisting of four, five, 
six or more letters. If a word has two vowel letters, i.e. the wavelet spectrum 
𝑊4(4, 𝑏) consists of two positive maxima, the six-letter algorithm is first 
used to identify the word. There are several options for the arrangement of 
letters. For example, two consonants side by side, two through a vowel. 
Then for five, four, and three letters. The database of individual words can 
be used for all people, because the structure of the word does not depend on 
the different pronunciation, timbre and emotional state of the person, and 
the boundaries between vowels and consonants are determined for all 
people in the same way. 

In order to distinguish some words, additional features are used. The 
number of segments that fall on vowels and sibilant letters is usually 
greater than the number of segments that fall on the rest. The Fourier 
spectrum of the WT segments of hissing letters is very different from 
other letters. Figure 3.4.5 shows the Fourier spectrum of the WT 
segments of the word "щебень" ["rubble"]. 
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Figure 3.4.5. Fourier spectrum of the WT segments of the word "щебень" 

 
The figure shows that the phoneme "щ" has a different spectrum from 

the others. Hissing phonemes when spoken contain more high-frequency 
components in the spectrum than other phonemes. 
 
 
3.4.1 Selection of phonemes by the energy of the segments of the 

wavelet coefficients 𝑾(𝒂, 𝒃) at different scales 

 
A detailed picture of the location of phonemes in a word or sentence can 

be established by studying the dependence of the energy of the segments of 
the wavelet spectrum on the scale factor 𝑎. The MHAT wavelet is used for 
the study. The continuous wavelet transform formula is used to calculate 
the wavelet spectrum of a speech signal. The Fourier transform is used to 
calculate the Fourier spectrum of the wavelet spectrum segments. The 
Parseval formula is used to calculate the energy of phoneme segments. To 
study the dependence of the energy of the segments of the wavelet spectrum 
on the scale factor a, the energy of the segments of the functions 𝑊(𝑎, 𝑏) is 
calculated. Figure 3.4.1.1 shows graphs of the dependence of the energy of 
the segments E on the scale factor a of the wavelet transform 𝑊(𝑎, 𝑏) of 
the word "часы" ["clock"]. In Figure 3.4.1.1𝑎 the scale factor 𝑎 changes 
from 1 to 50 in increments of 1. When calculating the energy, the first half 
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of the Fourier coefficients is summed up [79]. In Figure 3.4.1.1𝑏 the scale 
factor a changes from 0.4 to 2.9 in increments of 0.05. When calculating the 
energy, the second half of the Fourier coefficients is summed up. 
 

 
a 

 

 
b 

Figure 3.4.1.1 Energy of the segments WT 𝑊(𝑎, 𝑏) of the word "часы" 
 

A similar picture is obtained when calculating the variance of the wavelet 
coefficients. However, when calculating the variance, all the Fourier 
coefficients are taken into account, and it is impossible to present graphs for 
different spectral ranges. The first graph (Fig. 3.4.1.1, a) shows in which 
segments the vowel sounds "а", "ы" are distinguished. The phonemes "ч" 

and "с" are not distinguished. In the second graph (Fig. 3.4.1.1, b), the 
phonemes "ч" and "с" (segments 4-13 and 32-38) are clearly visible and 
have more energy than the vowel phonemes. Figure 3.4.1.2 shows graphs 
of the dependence of the energy of the segments E on the scale factor 𝑎 WT 
𝑊(𝑎, 𝑏) of the word "пуск" ["start"]. 
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a 

 

 
b 

Figure 3.4.1.2. Energy of the segments WT 𝑊(𝑎, 𝑏) of the word "пуск" 
 

The conversion parameters are the same as for the word "часы". The 
phoneme "п" is distinguished in segments 7-9. Phoneme "c" is allocated 
(segments 15-21) in the same way as phoneme "c" is allocated in the word 
"часы" for small values of the scale factor 𝑎. The graph clearly shows the 
pause before the "к" phoneme. The wavelet analysis of the speech signal 
shows that the vowel phonemes and phonemes "н", "м", "л" have maximum 
energies at the average values of 𝑎. The energy of the phonemes "н", "м", 
"л" is much less than the energy of the vowel sounds of speech, but much 
higher than the energy of noise. The phonemes "к", "т", "п", "д" are 
distinguished at large values of 𝑎. 
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There is a pause before the phonemes "к" and "т". This pattern is 
observed with repeated repetition and does not depend on random factors. 
Hissing and whistling phonemes with small values of the scale factor 𝑎 have 
an energy 𝑊(𝑎, 𝑏), comparable to the energy of vowel phonemes. At 
average values of a, they have energy at the noise level. 

It should be noted that phonemes have a different dependence of the 
energy 𝑊(𝑎, 𝑏) on the scale factor 𝑎 when using a different frequency 
range. This allows us to distinguish two or three adjacent vowel or 
consonant phonemes. For example, all digits from 0 to 9, arithmetic 
operations (+, – ,∕,×), and commands "пуск", "стоп" ["stop"], 
"выключить" ["turn off"], and others can be recognized by examining the 
dependence of the energy of segments 𝐸 on the scale factor 𝑎 WT 𝑊(𝑎, 𝑏), 
without using other parameters since for each digit and command when 
pronounced, the dependence of the energy of segments 𝑊(𝑎, 𝑏) on the scale 
factor a is very different. Figures 3.4.1.3 and 3.4.1.4 show graphs of the 
dependence of the energy of the segments 𝐸 on the scale factor 𝑎 WT 
𝑊(𝑎, 𝑏) of the word "стоп". 
 

 
Figure 3.4.1.3.The energy of the segments WT 𝑊(𝑎, 𝑏) of the word "стоп" for large and 

medium values of the scale factor 𝑎 
 

In Figure 3.4.1.3, the scale factor 𝑎 changes from 1 to 50 in increments 
of 1. In Figure 3.4.1.4, the scale factor 𝑎 changes from 0.4 to 2.9 in 
increments of 0.05. 
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Figure 3.4.1.4. The energy of the segments WT 𝑊(𝑎, 𝑏) of the word "стоп" for small 
values of the scale factor 𝑎 

 

In Fig. 3.4.1.2 – 3.4.1.4, the location of the phonemes "п", "т" and "к" 
for large values of the scale factor a is different for the words "пуск" and 
"стоп", as well as for vowel phonemes at medium values of the scale factor 
a. For example, the words "выключить" and "отключить" have the same 
functions 𝑊4(4, 𝑏). The first word begins with a consonant, and the second 
with a vowel phoneme. However, the ratio of the energy of the segments 
WT 𝑊(9, 𝑏) to the energy of the segments WT 𝑊(2, 𝑏) of the first word is 
greater than for the second at the beginning of the word, since this pattern 
is observed for all consonant phonemes. For the word "выключить", the 
peak appears at the beginning of the word, and for the word "отключить", 
it is absent. 

Multiscale speech signal filtering allows us to represent words as a 
matrix of three rows and 𝑛 columns. The first line corresponds to a large, 
the second to an average, and the third to a small value of the scale factor 
𝑎. The scale factor a in the range from 0.2 to 1 corresponds to a small scale, 
from 1 to 40 – to an average scale, from 41 to 50 – to a large scale. The 
number of columns depends on the length of the word and the order of the 
vowels or hissing, muffled, explosive sounds of speech in the word. For 
example, the word "лента" ["tape"] can be represented by a matrix (Figure 
3.4.1.5). 
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𝐴 = (
0 0 0
1 1 1
0 1 0

    
0 1 0
0 0 1
0 0 0

) 

Figure 3.4.1.5. The matrix of the word "лента" 

 

The units in the first row of the matrix 𝐴 correspond to the phoneme "т", 
which is distinguished at large scales when pronouncing the word "лента". 
The zero elements of the fourth column of the same matrix correspond to 
the pause between the syllables "лен" and "та", which appears when 
pronounced. Figure 3.4.1.6 shows the dependence of the energy of the WT 
segments 𝑊(𝑎, 𝑏) for the scale coefficients 𝑎 = 23 and 𝑎 = 47. 
 

 

Figure 3.4.1.6. The energy of the segments of the word "лента" for the scale coefficients 
𝑎 = 23 and 𝑎 = 47 

 
The graph clearly shows the phoneme "н" with a large scale factor 𝑎 =

47, and the phonemes "а", "е" have insignificant energy. The graph also 
shows a pause between the syllables "лен" and "та", the segments of which 
have an energy that is insignificant for the scale coefficients 𝑎 = 23 and 
𝑎 = 47. The energy of the segments WT 𝑊(𝑎, 𝑏) changes during the 
transition from the phoneme "л" to the phoneme "e" and from the phoneme 
"e" to the phoneme "н". 

The wavelet spectrum 𝑊4(4, 𝑏) clearly distinguishes the boundaries 
between the phonemes "л", "е", "н" and is the basis for constructing the 
matrix of the word "лента". Depending on the number of maxima of this 
function, the rectangular surface (segments, scale factor) is divided into 
several areas. Figure 3.4.1.7 shows the projection of the energy of the 
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segments WT 𝑊(𝑎, 𝑏) of the word "умножить" ["multiply"] by this 
surface. 
 

 
Figure 3.4.1.7. Projection of the energy of the segments WT 𝑊(𝑎, 𝑏) words "умножить" 

by a rectangular surface (segments, scale factor) 
 
For the word "умножить", the function 𝑊4(4, 𝑏) has 4 maxima 

corresponding to the phonemes "у", "о" and "и".The surface is divided into 
5 regions. The first region is from the first segment to the first maximum of 
the function 𝑊4(4, 𝑏), the second is from the first maximum of the function 
𝑊4(4, 𝑏) to the second maximum, and so on. As we know, a word consists 
of several syllables, so therefore, a word matrix can be made up of several 
smaller matrices by joining them together. Thus, word recognition is 
facilitated by sequential, synchronous string shifting and a matrix 
comparison [38, 39, 44]. 

Multi-scale analysis based on WT allows us to combine words into 
different groups. As a result, the recognition time is reduced and the 
recognition accuracy is increased since the database of words can be divided 
into subgroups and presented as a search tree. 
 
3.4.2 Dependence of the energy of the segments WT 𝑾(𝒂, 𝒃) on the 

value of the scale factor 𝒂 

 
The dependence of the energy of the segments WT 𝑊(𝑎, 𝑏) on the 

value of the scale factor 𝑎 for "п" and "а" phonemes is shown in Figure 
3.17. It can be seen that the phoneme "п" has many times more segment 
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energy at a large scale factor than the phoneme "а", and less energy at an 
average value of 𝑎. 

The dependence of the energy of the segments WT 𝑊(𝑎, 𝑏) on the 
value of the scale factor a for the phonemes "п" and "a" is shown in 
Figure 3.4.2.1 It can be seen that the phoneme "п" has many times more 
segment energy at a large scale factor than the phoneme "a", and less 
energy at an average value of 𝑎. 
 

 
Figure 3.4.2.1. Dependence of the energy of the WT 𝑊(𝑎, 𝑏) segments on the value of 

the scale factor 𝑎 of the phonemes "п" and "a" 
 
For the phonemes "т" and "к", the dependence of the energy of the 

segments WT 𝑊(𝑎, 𝑏) on the value of the scale factor 𝑎 is the same as for 
the phoneme "п". In the word "лента", at large scale coefficients, the signal 
level is comparable to the noise level for all phonemes except for the 
phoneme "т", so the elements of the first row of the matrix are zero for the 
phonemes "л", "е", "н", "а". The dependence of the energy of the segments 
WT 𝑊(𝑎, 𝑏) on the value of the scale factor 𝑎 for the phonemes "н", "м", 
"л" differs only in that these phonemes always have less energy than the 
vowel phonemes. Figure 3.4.2.2 shows this difference. 

Whistling phonemes, which are distinguished at a small scale factor on 
par with vowel phonemes, have the same dependence of the energy of the 
segments WT 𝑊(𝑎, 𝑏) on the value of the scale factor 𝑎 as the phoneme 
"ш". 
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Figure 3.4.2.2. Dependence of the energy of the WT segments 𝑊(𝑎, 𝑏) on the value of 

the scale factor a of the phonemes "м" and "а" 
 

Figure 3.4.2.3 shows the dependence of the energy of the segments 
𝑊(𝑎, 𝑏) on the scale factor 𝑎 of the phonemes "а" and "ш". 
 

 

Figure 3.4.2.3. Dependence of the energy of the WT segments 𝑊(𝑎, 𝑏) on the value of 
the scale factor 𝑎 of the phonemes "а" and "ш" 

 
These examples show that the multiscale representation allows us to 

visualize the dynamics of changes in the speech signal along the "scale 
axis". These changes in the "scale variable" provide important information 
about the speech signal. 
 

3.4.3 Speech fusion recognition 

 

Unlike printed text or artificial signals, natural speech does not allow 
simple and unambiguous division into elements (phonemes, words, 
phrases), since these elements do not have explicit physical boundaries. 
They are isolated in the mind of the listener – a native speaker of a given 
language – as a result of a complex multi-level process of speech 
recognition and understanding. The MHAT wavelet is used for the study. 
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The boundaries can only be determined during the recognition process by 
selecting the optimal sequence of words that best matches the input stream 
of speech according to acoustic, linguistic, and pragmatic criteria. 

Figure 3.4.3.1 shows the energy of the segments WT 𝑊(𝑎, 𝑏) of the 
sentence "лента остановилась" ["tape spopped"] for the scale coefficients 
𝑎 = 23 and 𝑎 = 47. The energy of the segments of the word "лента" in 
the sentence exactly repeats the dependence of the energy of the segments 
of the individual word "лента". There is no pause between the words 
"лента" and "остановилась". The phoneme "c" has large energy at a large 
scale factor 𝑎. 
 

 

Figure 3.4.3.1. The energy of the segments of the sentence "лента остановилась" for the 
scale coefficients 𝑎 = 23 and 𝑎 = 47 

 

Figure 3.4.3.2 shows a graph of the dependence of the energy of the 
segments 𝐸 on the scale coefficient 𝑎 of the wavelet transformation 𝑊(𝑎, 𝑏) 
of the phrase "открыть бункер" ["open the bunker"]. 

The scale factor a varies from 1 to 50 in increments of 1. When 
calculating the energy, the first half of the Fourier coefficients is summed 
up. 
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a 

 

 
b 

Figure 3.4.3.2.The energy of the segments WT 𝑊(𝑎, 𝑏) of the phrase "открыть бункер" 
 

When the same sentence is repeated many times, the energy 
dependence of the segments WT 𝑊(𝑎, 𝑏) remains the same. The positions 
of the vowels and consonants remain unchanged relative to each other, 
only the durations between the peaks and their heights change. This 
arrangement of peaks for different scale coefficients for the same sentence 
does not depend on who pronounces the given sentence [38, 44]. 
 

3.4.4 Speech fusion recognition based on image processing techniques 

 
The energy of the WT segments 𝑊(𝑎, 𝑏) is a two-dimensional object, 

so we can use two-dimensional WT methods for it. In [57, 71], strategies 
for searching an image database are considered. In them, the query is 
expressed either as a low-resolution image obtained using a scanner or 
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video camera, or as a rough sketch of the desired image drawn by the user 
himself. This approach to the formation of an image query has received 
various names, including "query by content" [71], "query by sample" [71], 
"search by similarity method" [68] and "search by sketch" [69, 70]. Using 
the wavelet decomposition of the query image and the image from the 
database can quickly and efficiently satisfy the content query. The 
algorithm for generating an image query with variable resolution, which 
uses the most significant wavelet coefficients, significantly increases the 
speed and reliability of recognition of two-dimensional objects. Figure 
3.4.4.1–3.4.4.4 shows the results of a two-dimensional WT of the energy 
of the segments WT 𝑊(𝑎, 𝑏) of the phrases "мелкий гравий" ["fine 
gravel"] and "крупный песок" ["coarse sand"]. 
 

 
Figure 3.4.4.1. Wavelet transformation of the energy of the segments WT 𝑊(𝑎, 𝑏) of the 

phrase "мелкий гравий" by columns 
 

 
Figure 3.4.4.2. Wavelet transformation of the energy of the segments WT 𝑊(𝑎, 𝑏) of the 

phrase "крупный песок" by columns 
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Figure 3.4.4.3. Wavelet transformation of the energy of the segments WT 𝑊(𝑎, 𝑏) of the 

phrase "мелкий гравий" along the lines 
 

 
Figure 3.4.4.4. Wavelet transformation of the energy of the segments WT 𝑊(𝑎, 𝑏) of the 

phrase "крупный песок" along the lines 
 

The coefficients of a two-dimensional WT have different values 
depending on the direction of decomposition, i.e. on the one-dimensional 
expansion over the rows or columns of a two-dimensional object. In this 
regard, we can use both the anisotropy of the two-dimensional WT and the 
dependence of the energy of the WT segments 𝑊(𝑎, 𝑏) on the scale factor 
𝑎 for the recognition of merged speech. The energies of the segments WT 
𝑊(𝑎, 𝑏) are pre-calculated for the scale coefficients 𝑎, equal to 1, 21, 41, 
61, to reduce the conversion time. Next, the wavelet coefficients are 
calculated, expanded by columns and rows for the scale factor 𝑎 = 20, and 
are indicated in Figures 3.4.4.1–3.4.4.4 𝑊12(20, 𝑏) and 𝑊11(20, 𝑏). The 
total number of segments is 1024. 

We see that even though the word combinations have the same number 
of letters, the low-resolution wavelet transforms for these sentences are 
different. For example, the ratio between the first and second maxima in 
Figures 3.4.4.3 and 3.4.4.4 always remains the same, because the word 
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"песок" has more energy for large scale factors 𝑎 than the word "гравий". 
If we normalize the maxima by one and calculate the correlation function 
for these WT, we can easily recognize these phrases. 
 
3.4.5 Algorithm for numerical calculation of fractal dimension 

 
WT is well suited for analyzing fractal sets that have a hierarchical 

nature. One of the areas of application of wavelet analysis is the study of 
the properties of fractal objects of various nature and, in particular, the 
determination of the fractal dimension. The skeleton of the wavelet 
transform shows the presence of hidden self-similarity in a continuous 
display or a discrete data set in the form of a developed tree-like structure 
with forks that depend on the scale according to the power law. 

The term "fractal" (Latin fractus – broken, fractional) was introduced into 
use by the American mathematician B. Mandelbrot. A fractal is a structure 
consisting of parts that are in some sense similar to the whole. These 
structures are characterized by a parameter called fractal dimension. Central 
to the definition of fractal dimension is the concept of the distance between 
points in the space 𝜉. As a test function for measuring the length of curves, 
surface area, or volume, a test function of the form is selected 
 

ℎ(𝛿) = 𝛾(𝑑)𝛿𝑑 
 
where 𝛿 is the distance between points in space, 𝛾(𝑑) = 1, 𝛾(𝑑) =

𝜋

4
, 

𝛾(𝑑) =
𝜋

6
 for a segment, square, cube, respectively. The measure of the set 

of points 𝜉 in space is 
 

𝑀𝑑 = ∑ ℎ(𝛿)

𝑁(𝛿)

𝑛=1

 

 
In general, for 𝛿 → 0, the measure 𝑀𝑑 is zero or infinite, depending on 

the choice of the 𝑑 – dimension of the measure. 
The Hausdorff-Bezikovich dimension 𝐷 of a set 𝜉 is the critical 

dimension at which the measure 𝑀𝑑 changes its value from zero to infinity 
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𝑀𝑑 = ∑ ℎ(𝛿)𝑁(𝛿)
𝑛=1 = 𝛾(𝑑)𝑁(𝛿)𝛿𝑑 → 0 for 𝑑 > 𝐷 with 𝛿 → 0 

𝑀𝑑 = ∑ ℎ(𝛿)𝑁(𝛿)
𝑛=1 = 𝛾(𝑑)𝑁(𝛿)𝛿𝑑 → ∞ for 𝑑 < 𝐷 with 𝛿 → 0 

 
When 𝑑 = 𝐷, the 𝑀𝑑 measure changes its value abruptly. The 

Hausdorff-Bezikovich dimension 𝐷 = 1 is for a line, for planes 𝐷 = 2 and 
𝐷 = 3 – for balls and other bodies of finite volume. For fractal sets, the 
Hausdorff-Bezikovich dimension 𝐷 is not an integer and is called the 
fractal dimension, which is strictly greater than the topological dimension, 
which is always equal to an integer. For example, for a line, the topological 
dimension is one. Thus, a fractal is a set whose Hausdorff-Bezikovich 
dimension is strictly greater than the topological dimension [2, 12, 60]. 
Many fractals are self-similar, i.e. a part of a set is similar to an entire set. 
This property is called scale invariance, or scaling. Scaling is the 
transformation of parallel transfer and scaling. For a self-similar set with 
a similarity coefficient 𝑟, the similarity dimension 𝐷𝑠 is calculated by the 
formula 
 

𝐷𝑠 =
ln 𝑁

ln 𝑟(𝑁)
 

 
where 𝑁 is an integer for each self-similar fractal, 𝑁 has its own value for 
such fractals whose similarity dimension coincides with the Hausdorff-
Bezikovich dimension, 𝐷𝑠 = 𝐷. 

A fractal measure can be represented by interconnected fractal subsets 
varying in power law with different exponents. Such systems are called 
multifractal. The Hungarian mathematician 𝐴. Renyi proposed a family of 
dimensions that generalizes the Hausdorff-Bezikovich dimension. By 
definition, 𝑞-the Renyi dimension is defined by the formula 
 

𝐷𝑞 = lim
𝛿→0

1

𝑞 − 1

log ∑ 𝑝𝑖
𝑞𝑁

𝑖=1

log 𝛿
 

 
where 𝑝𝑖 is the probability of hitting the 𝑖-th component of the fractal. 
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For 𝑞 = 0, 𝐷0 = 𝐷, the Renyi dimension coincides with the Hausdorff-
Bezikovich dimension. The dimension of the self-similar fractal coincides 
with the Hausdorff-Bezikovich dimension [12]. 

The fractal dimension is closely related to the Helder exponent 𝛼, also 
called the singularity exponent. The features of the 𝑀𝑑 measure are 
characterized by the Helder exponent, i.e. the measure has singularities with 
the Helder exponent on fractal sets with a fractal dimension depending on 
𝛼. Multifractal signals can be decomposed into "sub-signals", each of which 
is characterized by its own local dimension, given by a certain weight 
function [60]. 

Examples of classical fractal sets are: "Sierpinski carpet", "Sierpinski 
napkin", Koch curve, Cantor sets, Riemann, Weierstrass, Hankel, 
Bezikovich functions, etc. It is known that all the wavelets of this family are 
similar to their basic wavelet and are obtained from it by means of 
compressions and shifts. Since wavelet analysis involves the study of the 
behavior of signals at different scales, it is most suitable for the study of 
fractal behavior. By examining the sum of the higher moments of the 
wavelet coefficients at different scales, it is possible to determine whether 
a given signal is mono-or multifractal [60]. The wavelet analysis allows us 
to determine the fractal dimension of the set of points at which the function 
is singular. It is shown in [59] that the dimension of a monofractal can be 
calculated by the formula 
 

𝐷 =
ln 𝑁(𝑎)

ln 𝑎
 

 
where 𝑁(𝑎) is the number of local maxima of the wavelet coefficients when 
the scale factor 𝑎 tends to zero. 

Consider a triad Cantor set. The construction of a Cantor set begins with 
a segment of unit length. Then the segment of unit length is divided into 
three parts, the middle part is discarded and two segments remain. Then 
each of the remaining segments is again divided into three parts and the 
middle parts are discarded, etc. After an infinite number of generations, the 
remaining infinite set is scattered over a single segment. This set is called 
Cantor dust. Figure 3.4.5.1 shows the 9th generation Cantor function. The 
experimental determination of the fractal dimension may introduce an error 
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because the scale factor a is closer to zero or further from zero, depending 
on the signal sample. For example, with a sample of 8192 samples, the scale 
factor 𝑎 = 0.5 is further from zero than 𝑎 = 1 with a sample of 32768 
samples. Also, the number of local maxima for the same interval depends 
on the number of samples. 
 

 
Figure 3.4.5.1. Cantor dust 

 
To determine the fractal dimension, we have developed the following 

algorithm, which allows us to eliminate these shortcomings. The algorithm 
for calculating the fractal dimension includes the following steps: 

1. The wavelet coefficients with scale factors from 𝑎 = 1 to 𝑎 = 2000 
are calculated on a logarithmic scale. 

2. The number of local maxima 𝑁 for different scale coefficients 𝑎 is 
calculated. 

3. A graph of the dependence of the logarithm 𝑁 on the logarithm 𝑎 is 
plotted on a twice-logarithmic scale. 

4. The least squares method calculates the slope of the curve, which 
corresponds to the fractal dimension. 

 
Figure 3.4.5.2 shows the skeleton of the wavelet coefficients on the 

logarithmic scale for the 5th generation prefractal, i.e. the local maxima of 
the wavelet coefficients. 
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Figure 3.4.5.2. Skeleton of Cantor dust 

 
It can be seen how the skeleton reveals not only the hierarchical structure 

of the analyzing set, but also the way of constructing the fractal measure on 
which it is formed. For the constructed 9th generation prefractal, the 
calculated dimension is 𝐷 = 0.60. The theoretical fractal dimension 𝐷 =
0.63 for a triad Cantor set. The higher the generation order of the Cantor 
series is used, the more precisely its dimension is determined [12, 31, 59]. 
 
3.4.6 Speech fusion recognition using fractal dimension 

 
To recognize merged speech, we can use a picture of the local maxima of 

phonemes. The picture of the local maxima of phonemes in a sentence 
coincides with a similar picture in a word. Figures 3.4.6.1 and 3.4.6.2 show the 
skeletons of the phonemes "а" and "и". The scale factor 𝑎 in these figures varies 
from 1 to 27. 
 

 
Figure 3.4.6.1. Skeleton of phoneme "а" 
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Figure 3.4.6.2. The skeleton of the phoneme "и" 

 
As the scale factor 𝑎 increases, the number of local maxima decreases, 

similar to fractal behavior. If we understand something different from an 
abstract triad set by a Cantor set, the speech signal can be represented as a 
set whose rod heights are different, in contrast to the triad set. When 
calculating the dimension according to the developed algorithm, fractional 
numbers are obtained for phonemes. Since the topological dimension is zero 
for a Cantor set, and the calculated dimensions are greater than zero and not 
integers, the speech signal can be represented as a fractal set. The fractal 
dimensions for different phonemes differ from each other, and therefore 
they can be used as information features of phonemes in speech recognition 
[31]. Figures 3.4.6.1 and 3.4.6.2 clearly show the difference between the 
phonemes from each other. For vowel phonemes, when the scale factor 𝑎 is 
increased, the line corresponding to the main tone is clearly visible. To find 
the pitch frequency, it is enough to determine the time between these lines. 
Skeletons of phonemes show that regardless of whether the words are 
pronounced separately or together in a sentence, they have the same picture. 

The representation of a sentence in the form of a wide matrix allows us 
to select words from a sentence by sequentially comparing a section of the 
sentence matrix with the word matrix. In addition, using the matrix allows 
us to select the entire sentence from the speech stream, if such a sentence is 
in this stream. 

To recognize a sentence, we can also use the grammatical rules of a 
particular language. By comparing the roots and endings of the words of a 
sentence with the roots and endings of individual words, we can recognize 
the sentence. 
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3.4.7 Automatic speech command recognition device 

 
The block diagram of the speech command recognition device is 

shown in Figure 3.4.7.1. The principle of operation of the device is as 
follows. 
 

 
Figure 3.4.7.1. Block diagram of the speech command recognition device: 

1 – audio signal preprocessing unit 
2 – block for highlighting information features of phonemes 

3 – phoneme identification block 
4 – block for determining the boundaries between vowel and consonant phonemes 

5 – word formation block 
 

The analyzed audio signal 𝑆(𝑡) is sent to the audio signal preprocessing 
unit (block 1). In block 1, the audio signal is digitized using an ADC, cleared 
of extraneous noise, and stored in a RAM. From the output of block 1, the 
digitized audio signal, with the parametric representation of the audio 
signal, simultaneously enters the block for selecting information features of 
phonemes (block 2) and the block for determining the boundaries between 
vowels and consonant phonemes (block 4). 

In the parametric representation mode of the audio signal, the selected 
phoneme information features from block 2 are sent to block 3 and stored 
so that they can be used for phoneme recognition. In speech recognition 
mode, the digitized audio signal simultaneously enters the phoneme 
identification block (block 3) and the vowel-consonant phoneme boundary 
detection block (block 4). When speech recognition is performed from the 
outputs of blocks 3 and 4, the processed audio signal is sent to the word 
formation block. The block diagram of the algorithm for forming the 
phoneme database is shown in Figure 3.4.7.2. 
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The following algorithm is used to form phoneme standards. The wavelet 
spectrum 𝑊(𝑎, 𝑏) is calculated. The resulting wavelet coefficients 
(functions) 𝑊(𝑎, 𝑏) are divided into segments of fixed duration. In each 
segment, the Fourier coefficients 𝑎(𝑖), 𝑏(𝑖) of the functions 𝑊(1, 𝑏) and 
𝑊(2, 𝑏) are calculated using the FFT. The Fourier spectrum of the functions 
𝑊(1, 𝑏) and 𝑊(2, 𝑏) of each letter of the Russian alphabet is calculated. 
The number of local maxima 𝑊(𝑎, 𝑏) is calculated as the background for 
the scale factor 𝑎, greater than 2. For each letter of the Russian alphabet, a 
database is created with a set of characteristic frequencies (range) of 
function segments 𝑊(𝑎, 𝑏). 

The lower and upper limits of the range of characteristic frequencies 
obtained by the repeated pronunciation of Russian words are used as 
phoneme standards for speech recognition. It is possible to update (expand 
the frequency range) the database with phoneme standards so that speech 
sounds stand out when new words are added to the dictionary (a database 
of individual words), i.e. a system-training algorithm has been developed. 
A block diagram of the phoneme identification algorithm is shown in Figure 
3.4.7.3. To identify phonemes in the phoneme identification block, basically 
the same actions are performed as in the phoneme database formation block, 
only in the last point, the phonemes of the studied speech signal are 
compared with the phoneme standards of the database. The selected 
phonemes are stored in RAM. 
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Figure 3.4.7.2. Block diagram of the phoneme database generation algorithm 
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Figure 3.4.7.3. Block diagram of the phoneme identification algorithm 

 
 

1 

1 
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A block diagram of the algorithm for determining the boundary between 
vowel and consonant phonemes is shown in Figure 3.4.7.4. 
 

                                
Figure 3.4.7.4. Block diagram of the algorithm for determining the boundary between 

vowel and consonant phonemes 
 

The algorithm for determining the boundary between vowel and 
consonant phonemes includes the following steps. The energy of the 
segments of the wavelet spectrum is calculated for the scale factor 𝑎, equal 
to two, and the energy of the segments of the audio signal, the sum of the 
normalized energies is determined. The result of summation is subjected to 
WT. The wavelet spectrum 𝑊4(4, 𝑏) determines the boundaries between 
vowel and consonant phonemes in the audio signal, which are used in block 

1 

Calculate the energy of the segment 
of the wavelet spectrum  

and the signal 

𝑎 < 𝑘 

Normalize the energy of the wavelet 
spectrum and signal segments 

Calculate the sum 

Calculate the wavelet spectrum 
𝑊4(4, 𝑏) 

Stop 

Start 

0 
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2 for visual observation when forming the phoneme database and block 5 
for word formation. The block diagram of the word formation algorithm is 
shown in Figure 3.4.7.5. 
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Figure 3.4.7.5. Block diagram of the word formation algorithm 

 
Depending on the number of positive maxima in the function 

𝑊4(4, 𝑏), different algorithms are selected for comparing the studied 
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word with the words in the word database. If one positive maximum is 
selected, an algorithm is used to find the boundary between vowel and 
consonant phonemes for three phonemes. If two positive maxima are 
distinguished, then an algorithm is used to find the boundary between 
vowel and consonant phonemes for five phonemes, etc. 

To form a word, the number of recognized letters is counted in the 
interval where the vowel letters are highlighted. The three vowel letters 
for which these numbers are the largest are determined and written in 
descending order in a string array in order to later use them for 
comparison with the letters of words from the dictionary. In the same 
way, three sibilants or sibilant letters are counted and selected in the 
interval where the consonant non-sibilant or sibilant letters are 
highlighted. To identify words, a dictionary is used to check for the 
presence of composed words in the word database. 
 
3.5 Conclusions 
 

1. Phoneme standards based on the Fourier spectra of the segments of 
the wavelet coefficients of the speech signal and on the Fourier 
spectra of the segments of the speech signal are studied. The former 
were less variable than the latter. A phoneme database and 
algorithms for identifying speech signal phonemes have been 
developed. 
 

2. The WT of the speech signal allows us to determine the temporal 
organization of speech, i.e. to determine the position of the vowels 
and consonants of the phonemes of a word or sentence. An 
algorithm for determining the boundaries between vowels and 
consonants of speech sounds has been developed. An algorithm for 
forming words based on recognized phonemes has been developed. 
 

3. Multiscale processing of the speech signal produces muffled 
explosive sounds at a large scale factor, and muffled slits and 
affricates at a small scale factor. Vowel phonemes have the highest 
values of the wavelet coefficients at the average values of the scale 
factor and a longer duration compared to other speech sounds. 
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4. Multiscale speech signal processing shows that the words in a 

sentence have the same structure as when pronounced separately. A 
two-dimensional WT-based speech fusion recognition algorithm 
has been developed. 
 

5. A software package has been developed using Visual C++ and 
Visual Basic for Applications, which implements algorithms for 
multiscale speech signal processing. 
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4 APPLICATION OF ALGORITHMS FOR NUMERICAL 

CALCULATION OF FAST CONTINUOUS WAVELET 

TRANSFORM FOR SIGNAL PROCESSING 

 
4.1 Compression of a one-dimensional and two-dimensional signal 

 
Discrete and continuous WT is redundant, since the number of wavelet 

coefficients exceeds the number of samples of the original signal. In order for 
the number of wavelet coefficients to be equal to the number of samples of 
the original signal, a discrete WT uses a sub-band encoding (filtering) 
algorithm. This algorithm is closely related to MSA. Sub-band filtering is not 
just used for decomposition and recovery, but the purpose, according to I. 
Daubechies, is compression or processing between the stages of 
decomposition and recovery. Compression after sub-band filtering is more 
feasible than in the absence of filtering in many applications. Compression 
after sub-band filtering is performed by discarding the wavelet coefficients 
with a small value, without noticeable signal distortion. In this way, data 
reduction is achieved. In this regard, discrete WT is widely used for 
information compression, since there is no similar algorithm for continuous 
WT, and continuous WT is not used for compression. 

The algorithm developed by the author for signal reconstruction also 
allows the use of sub-band encoding for continuous WT. Using the Sinc-
wavelet and multiplying it by the cosine, we can create low-pass and high-
pass filters. By sequentially passing the signal through low-pass and high-
pass filters and using decimation, we can repeat the Mall algorithm for 
continuous WT. 

Consider an example of signal compression and applying fast continuous 
WT without using decimation and interpolation. If we examine the wavelet 
coefficients or complex conjugate Fourier coefficients for different levels 
of decomposition 𝑚, we see that for large scale coefficients 𝑎, the wavelet 
coefficients are almost the same throughout the signal. The Fourier 
coefficients have very few coefficients with large amplitudes. Also, the 
energy that falls on the average values of 𝑚 for the acoustic signal is much 
greater than on the large and small levels of decomposition. There are 
differences for other types of signals. Information compression for a 
continuous WT can be performed either in the region of the wavelet 
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coefficients or in the region of the Fourier coefficients by removing the 
coefficients with a small value. Removing coefficients with a small value 
of the wavelet coefficients is called threshold signal processing. Figure 
4.1.1 shows the graphs of the speech signal 𝑆(𝑡) and its variants, 
compressed 3 and 6 times. 
 

 
a 

 

 
b 

 

 
c 

Figure 4.1.1. Signal compression 
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The acoustic signal 𝑆(𝑡) is divided into 12 levels of decomposition. 
Figure 4.1.1 shows the 1

4
 part of the signal. The compression was performed 

in the region of Fourier coefficients, since when finding the complex 
conjugate spectrum of an acoustic signal and a wavelet, the wavelet 
spectrum at each level leaves the Fourier coefficients of the signal large in 
a certain frequency range, and outside this range with very small values. In 
this regard, at each level of the decomposition, it is sufficient to leave the 
coefficients in a narrow spectral range for large scale coefficients. The 
smaller the scale factor value, the wider the range, and the center of this 
range is shifted towards high frequencies. By ear, the difference between 
the original signal and its compressed version is almost imperceptible. The 
Pearson correlation coefficient for a signal compressed by a factor of 3 is 
0.890. For a signal compressed 6 times, – 0.817. 

If we try to compress the same signal using FT, the results will be much 
worse. Even when half of the Fourier coefficients are removed, the restored 
signal is severely distorted because the time of occurrence of frequencies in 
the signal is lost with FT. Regardless of whether a certain frequency appears 
at the beginning or end of a signal with a certain duration, the position and 
amplitude of this harmonic will be the same in the Fourier spectrum. If the 
same frequency appears at the beginning and end of the signal, the 
amplitude of this harmonic will increase according to the total duration. In 
other words, removing any harmonics can change the waveform very much. 
With MSA, the signal is decomposed into several levels, and the appearance 
of a certain frequency of any duration is manifested on the Fourier spectrum 
of the 𝑚-th level. At other levels, the amplitude of this harmonic will be 
very small. 

There are many methods of compressing information. Just like for 
discrete WT, it is possible to compress the signal using wavelet coefficients. 
Sub-band coding specialists prefer symmetry, since less asymmetry leads 
to more compressibility of the signal. Symmetric filters are called linear 
phase filters, i.e. they have a linear phase-frequency response. Unlike 
discrete wavelets, continuous wavelets are symmetric and smooth 
functions, so they are more suitable for information compression. 
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4.1.1 Two-dimensional continuous fast WT 

 
An example of a two-dimensional signal is an image. Image processing 

in one way or another is carried out by specialists in almost all fields of 
knowledge. It is difficult to name a field of science and technology where 
image processing is not used. Currently, using digital image processing, 
such complex mathematical problems as the identification of an individual 
by fingerprints, photographs, image restoration, projections in tomography 
(used in medical diagnostics to obtain images of internal organs), etc. are 
solved. The transition from the one-dimensional case to the two-
dimensional case is not only quantitative, but also qualitative. Many of the 
problems encountered in the processing of multidimensional signals are 
absent in the processing of one-dimensional signals, and conversely, many 
of the difficulties of digital signal processing are absent or easily removed 
when switching from one-dimensional signals to multidimensional ones 
[63]. 

The developed algorithms for forward and inverse fast WT in the 
frequency domain can be used for two-dimensional continuous WT. Here, 
a continuous two-dimensional WT means that the function 𝑧 = 𝑓(𝑥, 𝑦) 
depends on two variables 𝑥 and 𝑦. The function 𝑧 is a three-dimensional 
object. If the object is an image, the 𝑧 function is generated by encoding 
each pixel of the 𝑀-row and 𝑁-column with grayscale so that the darker 
areas correspond to smaller values and the lighter areas correspond to larger 
pixel values. WT methods are also suitable for color images with three color 
components. 

To do this, we need to perform WT independently on each of the three 
color components of the image and present the results as an array of vector-
valued wavelet coefficients. For a discrete two-dimensional wavelet 
transform for many applications, a construction is used in which the wavelet 
bases are obtained by the tensor product of two one-dimensional multiple-
scale analyses of columns and rows. There is a standard and non-standard 
construction of a two-dimensional basis. The standard construction of a 
two-dimensional wavelet basis involves taking all possible tensor products 
of functions of a one-dimensional basis. For a standard image 
decomposition, we need to perform a one-dimensional transformation of all 
rows, and then all columns. A non-standard construction of a two-
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dimensional basis produces one scaling function and three wavelets, called 
horizontal, vertical, and diagonal. In this design, low-and high-frequency 
filtering is repeated across rows and columns by applying all four possible 
combinations. The discrete wavelet transform for a non-standard two-
dimensional basis is given by the scheme 
 

𝑧 → {𝐻𝑟𝐻𝑐𝑧, 𝐻𝑟𝐺𝑐𝑧, 𝐺𝑟𝐻𝑐𝑧, 𝐺𝑟𝐺𝑐𝑧} 
 
where 𝐻 is low-pass filtering, 𝐺 high-frequency filtering. 

The r index indicates that the filter is applied to rows, and the c index is 
applied to columns. If the signal (image) is given by an array of 𝑁 × 𝑁, then 
each array of approximating and detailing (for horizontal, vertical, and 
diagonal wavelet) coefficients of the first level consists of 𝑁

2
×

𝑁

2
 elements 

 

( 𝑧1 𝑑1ℎ

𝑑1𝜈 𝑑1𝑑) 
 
where 𝑧1 – approximating coefficients of the scaling function, 𝑑1 with 
indices ℎ, 𝜈, 𝑑 – detailing coefficients of the horizontal, vertical, and 
diagonal wavelet. 

For the second level 𝑁

4
×

𝑁

4
 elements, instead of 𝑧1, the approximating 

and detailing coefficients of the second level are also formed, for the third 
level 𝑁

8
×

𝑁

8
 elements, approximating and detailing coefficients of the third 

level, etc. The decomposition of the signal into wavelet series at a given 
resolution level 𝑚 is performed using these coefficients. 

In order to reconstruct a two-dimensional signal using the developed 
forward and inverse WT algorithm in the frequency domain, we first 
convert this signal into a one-dimensional one. In this case, the 
transformation of a two-dimensional signal into a one-dimensional one can 
be carried out by a sawtooth, a triangular scan in rows and columns, and a 
zigzag scan diagonally. After decomposition, the one-dimensional 𝑚-level 
signal is converted to a two-dimensional 𝑚-level signal of the 
decomposition. Figure 4.1.1.1 shows a block diagram of the device for 
direct and inverse two-dimensional fast continuous WT. 
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Figure 4.1.1.1. Block diagram of the device of two-dimensional direct fast WT: 1 – 

Analog-to-Digital Converter (ADC); 2 – random access memory; 3 – scanner row; 4 – 
scanner columns; 5, 6 – calculators fast continuous wavelet transform; 7 – persistent 

storage device; 8 – control device 
 
The analyzed signal 𝑆(𝑥, 𝑦) is sent to the ADC (block 1), from the output 

of which a discrete sample 𝑆(𝑛, 𝑛) is sent to the input of the RAM (block 
2). From the output of block 2, a two-dimensional sample of the signal 
simultaneously enters the inputs of the two-dimensional signal scanners in 
one-dimensional rows and columns (blocks 3, 4). From the scan blocks, 
one-dimensional signals with the number of samples 𝑛 × 𝑛 are sent to the 
inputs of the continuous fast forward WT calculators (blocks 5, 6), from the 
outputs of which the results of the WT signal are taken as an array of values 
of the wavelet coefficients with the size 𝑀 of scales on 𝑁 shifts 𝑊(𝑚, 𝑛). 
The control device (block 8) synchronizes the operation of ADC units 
(block 1), RAM (block 2), scanners (blocks 3, 4), and continuous fast direct 
WT calculators (blocks 5, 6). 

This device allows us to select various types of wavelet functions with 
an arbitrary sampling step of scale coefficients stored in ROM (block 7) for 
analyzing a two-dimensional input signal. The calculation of the continuous 
fast forward WT in blocks 5, 6 is similar to the one-dimensional WT 
algorithms considered. 

Since the inputs of these blocks receive a digitized signal, there is no 
need to have an ADC. Also, the ROMs and control device are taken out of 
these blocks and combined. A block diagram of a two-dimensional inverse 
fast continuous WT device is shown in Figure 4.1.1.2. 
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Figure 4.1.1.2. Block diagram of a two-dimensional inverse fast WT device: 1, 2 – 

continuous inverse fast WT calculators; 3 – permanent memory; 4, 5 – random access 
memory; 6, 7 – blocks for converting a one-dimensional array into a two-dimensional 

one; 8 – adder; 9 – control device 
 

 
Two wavelet spectra 𝑊(𝑚, 𝑛) are received at the inputs of the blocks 

of continuous fast inverse WT (blocks 1, 2), from the output of which the 
reconstructed signals 𝑠1(𝑛), 𝑠2(𝑛) are received at the inputs of the RAM 
(blocks 4, 5). From the outputs of blocks 4, 5, signals 𝑠1(𝑛), 𝑠2(𝑛) are 
received at the inputs of the blocks for converting a one-dimensional 
signal into a two-dimensional one (blocks 6, 7). From blocks 6, 7, two-
dimensional signals are received at the input of the adder (block 8). In 
block 8, the sum of two two-dimensional arrays is calculated, the elements 
of which are previously divided into two. From the output of block 8, the 
results of the inverse fast continuous WT two-dimensional signal are taken 
in the form of an array of values 𝑆(𝑛, 𝑛). The control device (block 9) 
synchronizes the operation of the continuous fast inverse WT blocks 
(blocks 1, 2), RAM (blocks 4, 5), blocks for converting a one-dimensional 
signal into a two-dimensional one (blocks 6, 7), and the adder (block 8). 

This device allows us to select various types of wavelet functions with 
an arbitrary sampling step of scale coefficients stored in ROM (block 3) 
for the synthesis of a two-dimensional signal. The calculation of the 
continuous inverse of the fast continuous WT in blocks 1, 2 is similar to 
the considered algorithms of the one-dimensional inverse WT. Also, the 
ROM and control device blocks are moved outside of these blocks and 
combined. 
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4.1.2 Compression of a two-dimensional signal 

 
Until the 1990s, the most common compression methods used in the 

JPEG and MPEG standards, based on the FT of the signal (discrete cosine 
transformation). JPEG (JointPhotographicExpertsGroup) – is a group of 
photography experts, a standard for encoding and compressing still images. 
MPEG (MovingPictureExpertsGroup) – is a group of experts on moving 
images, a standard for encoding and compressing moving objects, and video 
images. In the early 1990s, a new standard called wavelet compression was 
developed. 

The JPEG-2000 standard uses discrete WT for image compression. The 
practical implementation of video compression is carried out by means of 
a two-band filter bank, known as sub-band encoding. Video compression 
is usually understood as a reduction in the amount of memory required to 
store digital video data and transmit it over communication channels. The 
goal of video compression is a more compact representation of images. 
The development of effective video compression algorithms is important 
for the creators of digital video surveillance systems, graphics, videos, etc. 
There are two main types of redundancy that we can use. 

The first of these is intra-frame or spatial redundancy. It can be 
identified by one current video frame without referring to any other video 
frame. The second type is inter-frame, or temporary, redundancy, which 
requires both the current and the next video frame to be identified. In every 
real image, there is a spatial redundancy. If the image contains an object 
of a sufficiently large size, then all the elements representing this object 
have very close values. Large objects create low spatial frequencies, while 
small objects create high spatial frequencies [15]. 

Video compression takes place in several stages, and one of them is 
compressed using discrete WT. At other stages, time redundancy is 
removed, i.e. there is the removal of identical regions in frames, 
quantization with variable length (entropy coding, Huffman), and data 
archiving. Compression with WT, like compression with discrete cosine 
transformation (DCT), is based on the position that most of the energy is 
concentrated in a small number of coefficients, which are quantized 
according to their value. The concentration of energy in a few significant 
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coefficients is called energy localization, it is the main prerequisite for 
data compression. 

When using DCT, the image is transformed block by block. A typical 
block contains 8 × 8 image samples. As a result of the DCT of such a 
block, a block of 64 coefficients is formed. The coefficient is a number 
that expresses the degree to which a particular spatial frequency is 
present in the image. DCT itself does not give any compression. 
Moreover, the codeword lengths for the coefficients are longer than for 
the original image samples. However, the DCT provides a conversion of 
the image samples into a form that allows the redundancy to be 
identified. 

Since not all spatial frequencies are present at the same time, the DCT 
forms a set of coefficients, some of which have relatively large values, but 
many coefficients are small or equal to zero. Obviously, if the coefficient is 
zero, it does not matter whether it is transmitted or not. If the coefficient has 
a small, almost zero value, then its exclusion has the same effect as adding 
a weak interference with the same spatial frequency, but with the opposite 
sign. The decision to exclude a certain coefficient is made based on the 
visibility of such a small-amplitude signal. If the coefficient is very large 
and cannot be excluded, compression can still be achieved by reducing the 
number of bits used to transmit this coefficient. This operation is also 
accompanied by a certain negative effect, namely, a small level of noise is 
added to the image. 

The visibility of the spatial frequencies observed by humans is not the 
same, and much higher noise levels are acceptable at high frequencies. In 
this regard, the coding uses a weighting operation, which ensures the 
concentration of any resulting noise in the high frequency region. Each 
coefficient is divided by the weight, which is a function of its position in 
the block. The constant component is not weighed at all, and the weight of 
the coefficient (the divisor) increases as it approaches the lower-right 
corner. In the decoder, we need to perform an operation that is the inverse 
of the weighting. In this case, the coefficients for higher frequencies are 
multiplied by larger numbers, which leads to increased noise at these high 
frequencies. After weighing, some small coefficients become even smaller. 
In a television image, the coefficients with large values are usually located 
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in the upper-left corner, and the remaining coefficients are often negligible 
or equal to zero. 

In this regard, it is advantageous to transmit the coefficients in a zigzag 
sequence, starting from the upper-left corner. As a result of this process, 
non-zero coefficients are usually transmitted first, and zero coefficients are 
transmitted at the very end. At some point, starting from which all 
subsequent coefficients are equal to zero, it is advisable to interrupt the 
transmission by using a simple symbol that tells the receiver that there will 
be no non-zero coefficients [15]. 

A reconstruction algorithm that uses multiple-scale analysis is a way to 
concentrate all the available information in a signal in a few significant 
coefficients. There is a distinction between lossless and lossy image 
compression. The first is characterized by insignificant compression ratios. 
When compressing an image with acceptable losses, the compression ratio 
may be large. WT can be used for both lossless and lossy image 
compression. 

It is known that the operation of multiscale image representation is 
performed in the human eye. The eye is more sensitive to distortion in 
the low-frequency region. Any image contains redundant information 
that is not perceived by the human eye. Therefore, when compressing a 
two-dimensional image, it is necessary to take into account the human 
vision system. It is possible to improve the visual quality of the 
reconstructed image by applying algorithms that take into account the 
sensitivity of the eye in different frequency ranges. The discrete WT is 
not spatially invariant due to the presence of decimation and 
interpolation. This variability in space interferes with the compact 
representation of video signals. The developed algorithm for two-
dimensional continuous WT does not use decimation and interpolation, 
and there is also the possibility of compression in the frequency domain, 
so it is invariant to the shift. 

Therefore, it is possible to achieve good compression results by 
transmitting the same information only once, from frame to frame, as is 
done using the discrete cosine transform in the MPEG standard. Using the 
developed reconstruction algorithm allows us to transform a two-
dimensional object both in rows and columns individually, and the entire 
object as a whole. As a result, such objects can be preserved using few 
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coefficients, because for periodic objects, the complex conjugate spectrum 
has large values for few coefficients. 

For a family of discrete Daubechies wavelets, 𝑑𝑏𝑛, the concentrating 
mechanism works more efficiently with increasing 𝑛. In other words, the 
energy localization effect for the 𝑑𝑏2 wavelet is better than for the 𝑑𝑏1 
wavelet, because the 𝑑𝑏2 wavelet has two zero moments. As 𝑛 increases, 
the number of zero moments increases proportionally to 𝑛, and the wavelet 
symmetry also improves. 

The use of multiple iterations improves the smoothness of the wavelet, 
and it becomes really smooth only when the number of iterations tends to 
infinity. We can say that the use of continuous wavelets based on derivatives 
of the Gaussian function of large orders, for example, of the 10th order, 
should increase the compression ratio without noticeable distortion of the 
signal. The number of zero moments for continuous wavelets based on the 
derivatives of the Gaussian function increases in proportion to the order of 
the derivative, and symmetry and smoothness are inherent a priori. Figure 
4.1.2.1 shows an image of a girl without compression. Figures 4.1.2.2 – 
4.1.2.4 show images of the girl compressed 10, 22, and 52 times using a 
wavelet based on the second-order derivative of the Gauss function (MHAT-
wavelet). 
 

   
Figure 4.1.2.1. Image of a girl       Figure 4.1.2.2.10x compression 

 

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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Figure 4.1.2.3. 22x compression    Figure 4.1.2.4. 52x compression 

 
When compressing, the conversion from the RGB color model to the 

YCbCr model is not performed, as in JPEG, statistical encoders are not 
used, and the WinRAR archiver was used. 
 
4.2 Investigation of the dependence of the average grain size of 

ceramics on temperature 

 
To calculate the statistical parameters of the sample, the wavelet 

transform of the image obtained using an electron microscope is used. The 
proposed method provides a significant increase in the calculation speed 
due to the implementation of multiple-scale image analysis. When studying 
the microstructure of a material, statistical parameters are often used, such 
as the average size of the microparticles, the dispersion, the standard 
deviation of the size, and the coefficient of variation. 

To calculate these parameters, the diameters of a very large number of 
microparticles are measured, which is a long and time-consuming process 
[29]. To calculate these parameters, a continuous fast WT image obtained 
by an electron microscope is used. To determine the average size of ceramic 
grains, the intensity of each pixel of the image with a size of 512 × 512 in 
bmp format is read by horizontal and vertical progressive scanning, and the 
WT of the image with different scale coefficients is calculated. The image 
is decomposed into 100 levels and a histogram of the distribution of the total 
intensity 𝐽, which falls on each level of decomposition, is constructed. The 
average grain size of ceramics 𝐷 is calculated by the formula 
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                                                  𝐷 =
∑ 𝐽𝑖𝑖50

𝑖=1

∑ 𝐽𝑖
50
𝑖=1

                                                          (4.1) 

 
where 𝑖 is the decomposition number, 𝐽𝑖 is the total intensity of the 𝑖-th 
decomposition. To determine the dispersion of the ceramic grain size 𝐶, the 
formula below is used 
 

                                               𝐶 =
∑ 𝐽𝑖

50
𝑖=1 (𝑖−𝐷)2

∑ 𝐽𝑖
50
𝑖=1

                                                    (4.2) 

 
where 𝑖 is the decomposition number, 𝐽𝑖 is the total intensity of the 𝑖-th 
decomposition. The standard deviation of the ceramic grain size S is 
calculated by the formula 
 
                                                      𝑆 = 𝐶

1

2                                                              (4.3) 
 

By formulas (4.1), (4.2), and (4.3) calculate the average size 𝐷 of the 
ceramic grains, the variance, and the standard deviation on a logarithmic 
scale. To determine these values at the image scale, the base of the logarithm 
is found from the ratio 
 

𝑥100 = 218 
 

The average size of ceramic grains in the image scale is calculated by the 
formula 
 
                                                    𝐷𝑐𝑝 = 𝑥𝐷                                                           (4.4) 
 
 

The standard deviation of the ceramic grain size in the image scale is 
calculated by the formula 
 
                                                    𝑆𝑐𝑝 = 𝑥𝑠                                                             (4.5) 
 

The measurement method [10, 52] has been tested on various objects. In 
[54], it is shown that the relative error in measuring the size of objects is the 
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same at all levels of decomposition, i.e. the measurement quality is the same 
for both small particles and large particles. The average size of ceramic 
grains is calculated by formula (4.4) and the standard deviation of the size 
by formula (4.5) in the range from 1000 to 1250 degrees Celsius. Figure 
4.2.1 shows the temperature dependence of the average ceramic grain size. 
The actual average grain size of ceramics, taking into account the image 
scale at a temperature of 1000 degrees, is 420 nm, and the standard deviation 
is 20 nm. 
 

 
Figure 4.2.1. Dependence of the average grain size of ceramics on temperature 

 
The size is somewhat overstated because the images are obtained for the 

fracture of the ceramic and not for the slot. For the fracture of ceramics at 
large scales, the intensity of objects is high, which is typical for fractals. 
This is due to the fact that the images of ceramic grains look like clouds. To 
assess the degree of uniformity of the size, a value called the coefficient of 
variation is also used. The coefficient of variation is calculated by the 
formula 
 

𝜈 =
𝑆𝑐𝑝

𝐷𝑐𝑝
 

 
Figure 4.2.2 shows the temperature dependence of the coefficient of 

variation. 
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Figure 4.2.2. Dependence of the coefficient of variation on temperature 

 
A decrease in the coefficient of variation with increasing temperature 

indicates that the degree of uniformity increases with increasing 
temperature. Calculations show that as the temperature increases, the 
average size of ceramic grains increases, which coincides with traditional 
measurement methods, and the time spent obtaining the dependence is 
many times less and there is no need to have any device or tool for 
measuring the size of ceramic grains [21]. This method of measuring the 
statistical characteristics of micro-objects allows one to save time and costs. 
 
4.3 Comparison of the algorithm for multiple-scale image analysis in 

the frequency domain with the algorithm presented in the MatLab 

computer mathematics system 
 

The MSA algorithm uses frequency domain wavelets based on the 
derivatives of the Gaussian function [30, 33, 35, 49]. The main advantage 
of these wavelets is that they are smooth and symmetric functions with N-
order derivatives. Just such functions are necessary for WT. However, in 
scientific literature and on the Internet, the following is noted for the 
continuous wavelet transform: 
 

- the analysis is not orthogonal 
- the wavelet does not have a compact carrier 
- there is a missing scaling function 
- the possibility of reconstruction is not guaranteed 
- there is an excessive number of wavelet coefficients, far exceeding 

the number of samples in the original signal 
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- fast continuous wavelet transform algorithms and accurate 
reconstruction are not possible 

 
For these reasons, MSA does not use wavelets based on the derivatives 

of the Gaussian function. In fact, all these points are not true. The use of 
continuous WT gives better results and additional signal processing 
capabilities that are not possible with discrete WT. In this case, WT is 
performed for the entire image by a sawtooth scan in rows and columns. 
Unlike the Mall algorithm, this algorithm allows us to get many more levels 
of decomposition, thereby allowing us to study the image in more detail. 

Figure 4.3.1a shows a color image with a size of 512 × 512 pixels, 
reconstructed with approximating coefficients of the fourth level for the 
algorithm in the frequency domain using the MHAT wavelet. Also, when 
using this algorithm, there is no mosaic when the image is approximated by 
high-level coefficients. In fact, for the algorithm developed by the author, 
there are no approximating and detailing coefficients, but there are 
decomposition levels corresponding to the decomposition levels in the Mall 
algorithm, and we can compare the results of the decompositions. Figure 
4.3.1b presents a reconstructed image with approximating coefficients of 
the fourth level for the Mall algorithm using the Daubechies wavelet (db2). 
The calculation was carried out in the MatLab computer mathematics 
system. 
 

     
a                                                 b 

Figure 4.3.1. Reconstruction of the image with approximating coefficients of the fourth 
level 

In Figure 4.3.1b, the mosaic is clearly visible. Despite the fact that the 
conversion time in the Mall algorithm is almost the same as the algorithm 
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in the frequency domain, the quality is much worse. With an increase in the 
order of the wavelet (dbN) or with the use of other listed wavelets, the 
mosaic decreases, but it still turns out worse than for wavelets based on the 
derivatives of the Gaussian function. Reconstruction of the image with 
detail coefficients when also using the algorithm in the frequency domain 
gives a clearer image than in the MatLab computer mathematics system. 

Figure 4.3.2a shows the reconstructed image with the first-level detail 
coefficients for the frequency domain algorithm using the MHAT wavelet. 
Figure 4.3.2b shows a reconstructed image with the first-level detail 
coefficients for the Mall algorithm using the Daubechies wavelet (db2). The 
presented images are enlarged for a better view. In Figure 4.3.2a, the 
borders of the flower petals are clearly visible, and in Figure 4.3.2b, 
everything is blurred and there is no clear border of the petals. This is due 
to the fact that the phase-frequency characteristics of wavelets based on the 
derivatives of the Gaussian function have linear characteristics, and the 
phase-frequency characteristics of Rowdy wavelets are nonlinear since they 
are non-symmetric functions. 
 

     
a                                                          b 

Figure 4.3.2. Reconstruction of the image with the detailing coefficients of the first level 
 

Figures 4.3.3a and 4.3.3b show reconstructed images using all levels for 
the algorithm in the frequency domain and the MatLab computer 
mathematics system. 
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a                                                        b 

Figure 4.3.3. Reconstructed images in the frequency domain in MatLab 
 

When reconstructing an image using all levels in MatLab, many colors 
are lost, and when using the algorithm in the frequency domain, all colors 
are preserved and the reconstructed image does not differ from the original 
(Figure 4.3.3). In contrast to the discrete WT, based on the developed 
algorithm in the frequency domain, it is possible to perform multiple-scale 
analysis of images with a multiplicity of less than 2. This multiple-scale 
analysis allows us to view the image from the largest scale to the smallest, 
decomposing the image into dozens of levels. When moving from one level 
to another, the changes in the image are barely noticeable to the eye. Based 
on this algorithm, a microfilm is created, in which different images 
smoothly replace each other. Multiscale analysis of images with a 
multiplicity of less than 2 also allows one to determine the statistical 
parameters of the image, such as the average size, the standard deviation of 
the size and the coefficient of variation of micro-and macro-objects [15, 19, 
36-38, 46, 68, 76]. 

Satellite images are used to determine the average size of buildings in a 
particular area of a city or natural objects. A horizontal and vertical 
progressive scan reads the intensity of each pixel of the image size 512 ×
512 in bmp format, and it calculates the wavelet transform of the image with 
different scale coefficients. The image is decomposed into 100 levels and a 
histogram of the distribution of the total intensity 𝐽, which falls on each level 
of decomposition, is constructed. In order to get the result, a few tens of 
seconds are enough. The technique was tested on images of simple objects 
with the same size and on images of fractals. 
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Figure 4.3.4a shows an image of objects that have almost the same size. 
Figure 4.3.4b shows the intensity distribution from the level of decomposition 
of these objects. In Figure 4.3.4b, the peaks that correspond to the intensity 
of objects of a given size are clearly distinguished. Figure 4.3.5a shows an 
image of the T-fractal. Figure 4.3.5b shows the intensity distribution from the 
decomposition level for this fractal. For fractals, the peaks corresponding to 
the 𝑛-th generation prefractal are well distinguished, i.e. several peaks located 
at the same distance from each other are distinguished. The average size of 
objects D is calculated using the formula (4.1). The average size of objects in 
the image scale is calculated using the formula (4.4). Figure 4.3.6a shows a 
satellite image of the center of Sofia, the capital of Bulgaria. Figure 4.3.6b 
shows the intensity distribution from the decomposition level for this image. 
The average size of the structures for this area is 68 meters. 

The average size is somewhat overstated, since all levels of 
decomposition are taken into account. Decomposition levels above 32 take 
into account the fractality of cities, so they do not need to be taken into 
account. In the same way, the average size of all the capitals of the republics 
and regions of Russia is calculated, but without taking into account the 
levels above 32. Figure 4.3.7 shows a graph of the average size of all the 
capitals of Russia. 
 

   
a                                                                   b 

Figure 4.3.4. The image of objects and the distribution of intensity from the level of 
decomposition 
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a                                                                   b 

Figure 4.3.5. T-fractal and intensity distribution from the decomposition level 
 

 
a                                                                   b 

Figure 4.3.6. The center of Sofia and the distribution of intensity from the level of 
decomposition 

 

 
Figure 4.3.7. Average size of the capital's 

 
The cities are arranged in the same order as in maps online. Number 6 

on the chart shows the average size of the city of Belgorod, while number 
83 shows the average size of the city of Salekhard. Based on the calculated 
values of the average size, we can say that in Belgorod the size of the 
structures is the largest for this area, and in Salekhard the smallest. The 
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remaining capitals have an average size of structures between 18 and 46 
meters. Figures 4.3.8a and 4.3.8b show satellite images of Novosibirsk and 
Grozny. 
 

     
a                                                        b 

Figure 4.3.8. Satellite images of Novosibirsk and Grozny 
 

If one compare the images from space of Novosibirsk and Grozny, we 
can immediately see that in Novosibirsk there are more large structures, 
and in Grozny there are more small structures. The calculated average size 
of the structures in Novosibirsk is 37 meters, and the average size of the 
structures in Grozny is 22 meters. In this way, we can compare the other 
capitals. 

Figure 4.3.9a shows a satellite image of the ice floes of the Arctic 
Ocean. Figure 4.3.9b shows the intensity distribution from the 
decomposition level for this image. 
 

 
a                                                                 b 

Figure 4.3.9. Image of ice floes and intensity distribution from the decomposition level 
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In Figure 4.3.9, the average size of the ice floes, calculated using the 
formula (4.4), is 30.83 units in the image scale. The real average size of 
the ice floes, taking into account the image scale, is 1200 meters. Thus, by 
calculating the average size of ice floes in different places in real time, we 
can quantify the ice situation or trace the dependence of the average size 
of ice floes on the time of year for a particular place [10, 21, 35, 49, 50, 
52, 54, 55, 74]. Such measurements allow us to plot the route of the 
movement of sea vessels along optimal trajectories, thereby saving time, 
fuel and ultimately financial costs. 
 
4.4 Calculation of the anisotropy measure using the continuous fast 

wavelet transform 

 
In crystals, the mechanical, electrical, magnetic, and optical properties 

depend on direction, i.e. the crystals have anisotropy. This is due to the fact 
that in crystals, the atoms, molecules, or ions are arranged in the correct 
order. With the correct arrangement of the atoms, they are placed along 
different directions with different densities. The atoms are located at the 
nodes of the spatial lattice. If we draw planes through the lattice nodes in 
different directions, we can see that the density of the arrangement of atoms 
on these planes is different. Consequently, there are planes in crystals in 
which the atoms are more strongly bound to each other. 

There are planes in which the atoms are more loosely bound to each 
other, so the mechanical and other properties along these planes are 
different. Also, houses and structures are arranged in the correct order, as 
cities are built by people. A consequence of this order is that cities have 
anisotropy. The anisotropy of cities is related, for example, to the direction 
in which the wind speed is greatest under given weather conditions, or how 
fast it is possible to get from one point of a city to another point. If we look 
at satellite images of cities on a large scale, it is difficult to see the measure 
of anisotropy of cities, i.e. to what extent structural objects (houses, 
factories, or stadiums) are oriented in one direction or another. The 
anisotropy measure is calculated from the results of the wavelet transform 
of satellite images. The image is decomposed into different levels with 
multiplicity less than 2. The horizontal and vertical progressive scan reads 
the intensity of each pixel of the 512 × 512 image in bmp format and 
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calculates the wavelet transform of the image with different scale factors. 
The image is decomposed into 100 levels, and then a histogram of the 
distribution of the total intensity 𝐽, which falls on each level of 
decomposition, is constructed. 

The average size of city objects is calculated with horizontal and separate 
vertical image scans. The measure of anisotropy is calculated by the formula 
 

𝑎 =
𝐷𝑥

𝐷𝑦
 

 
where 𝐷𝑥 is the average size of objects with a horizontal scan; 𝐷𝑦 is the 
average size of objects with a vertical scan. 

The anisotropy measure shows how the structures are oriented: from 
north to south 𝑎 < 1 or from west to east. Figure 4.4.1 shows an image of 
one of the districts of New York City. Figure 4.4.2 shows the distribution 
of intensity from the level of decomposition in the horizontal scan. Figure 
4.4.3 shows the distribution of the intensity from the level of decomposition 
in the vertical scan. For the New York City area represented, the anisotropy 
measure is 1.127 units. Figure 4.4.4 shows the dependence of the anisotropy 
measure on the angle of rotation of the satellite image of one of the districts 
of New York city. 
 

 
Figure 4.4.1. Image of one of the districts of New York city 
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Figure 4.4.2. The distribution of intensity from the level of decomposition in the 

horizontal scan 
 

 
Figure 4.4.3. The distribution of intensity from the level of decomposition in the vertical 

scan 
 

 
Figure 4.4.4. Dependence of the anisotropy measure on the angle of rotation 

 
When the angle of rotation is 45°, the measure of anisotropy is 1, i.e. the 

structures are oriented mainly in the north-east direction. When the angle of 
rotation is 90°, the structures are oriented mainly in the direction from north 



Chapter 4                            APPLICATION OF ALGORITHMS FOR NUMERICAL... 

 

 

      char 

 
 
 
 

153 

to south. Calculating the measure of anisotropy, it is possible to determine the 
angle between the north-south direction and the direction under which the 
buildings of cities are mainly oriented [51, 53]. 

The design of wavelets with a large number of zero moments is relevant 
since they concentrate information more efficiently and also allow analyzing 
a more subtle (high-frequency) structure of the signal, suppressing its slowly-
changing components. For the effective study of non-stationary signals, just 
such functions are needed. Wavelets for different scale coefficients 𝑎 in the 
frequency domain are constructed taking into account the property of scale-
frequency locality, so that they have more zero moments at all levels of 
decomposition. 

In scientific literature, it is written that for practice it would be advisable 
to have orthogonal symmetric and antisymmetric wavelets, but such ideal 
wavelets do not exist. Due to the fact that orthogonal wavelets are constructed 
in the frequency domain, the resulting wavelets have almost perfect 
frequency characteristics, both amplitude and phase. They are almost perfect 
in the sense that they differ from the theoretical characteristics only in the 
error of calculation. Figure 4.4.5 shows a symmetric orthogonal time-domain 
wavelet constructed in the frequency domain. 

Figures 4.4.5 and 4.4.6 show that the wavelets have many maxima and 
minima. There are even more of them, since only a fifth of the wavelets are 
represented in the figures. To obtain such wavelets in the time domain, it 
would be necessary to solve equations with the same number for each level 
of decomposition. Orthogonal symmetric and antisymmetric wavelets 
constructed in the frequency domain make it possible to reconstruct one - 
and two-dimensional signals with greater accuracy, since they have a linear 
phase-frequency characteristic. The conversion time is no longer than for 
discrete wavelets. 
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Figure 4.4.5. Symmetric orthogonal wavelet 

 
Figure 4.4.6 shows an antisymmetric orthogonal time-domain wavelet 

constructed in the frequency domain. 
 

 
Figure 4.4.6. Antisymmetric orthogonal wavelet 

 
If we consider the amplitude-frequency characteristic of such wavelets, 

we see that these wavelets have an ideal characteristic. Figure 4.4.7 shows 
the amplitude-frequency response of an antisymmetric orthogonal wavelet. 
It can be seen that there is no unevenness in either the passband or the delay 
band, and there is no transition band. 
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Figure 4.4.7. The amplitude-frequency response of an orthogonal wavelet 

 
Figure 4.4.8 shows the amplitude-frequency response of a wavelet 

constructed in the time domain. The wavelet equation has the form: 
 

𝜓(𝑡, 𝑎, 𝑏) =
sin (

𝑡 − 𝑏
𝑎 )

(
𝑡 − 𝑏

𝑎 )
cos(𝜔𝑡) 

 

 
Figure 4.4.8. The amplitude-frequency response of a wavelet constructed in the time 

domain 
 

Figure 4.4.8 shows that the amplitude-frequency response is uneven in 
the passband. This effect is called the Gibbs phenomenon. It was first 
studied in connection with the truncation of the Fourier series used for the 
harmonic decomposition of periodic signals. Figure 4.4.9 shows the 
frequency response of a wavelet constructed in the time domain and the 
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frequency response of an orthogonal wavelet constructed in the frequency 
domain on the same graph in decibels. Up to a frequency of 260 units, the 
frequency response of a wavelet constructed in the time domain is 
represented, and from 260 to 512, the frequency response of a wavelet 
constructed in the frequency domain. 

Figure 4.4.9 clearly shows how much the frequency characteristics of 
these wavelets differ when compared at the same scale. The steepness of the 
decay (attenuation) of a wavelet constructed in the frequency domain is 
much higher, i.e. the transition band is very narrow. If the wavelet has a 
higher slope, then the resolution is higher. Resolution refers to the ability to 
separately measure (isolate) the spectral responses of two sinusoidal signals 
of equal amplitude and differing in frequency. A condition for the resolution 
of two spectral lines in optics is the Rayleigh criterion for the case when the 
instrumental contour has a diffraction shape. In some cases, two spectral 
peaks are considered resolved if there is a point between these peaks where 
the second derivative is greater than zero (the line has a bulge looking 
down). 
 

 
Figure 4.4.9. Amplitude-frequency response of a wavelet constructed in the time and 

frequency domain 
 

In radio engineering, two spectral peaks are considered allowed if the 
gap between them has a value of at least 3 decibels, i.e. the gap is 70% of 
the maximum peak value. Indeed, it can be noted that the wavelets 
constructed in the frequency domain have an ideal frequency response 
because in the delay band the signal is attenuated 1021 times, i.e. a billion 
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trillion times. All wavelets constructed in the time domain have an uneven 
amplitude-frequency response in both the passband and the delay band. 
There is no way to fix this, but one can only reduce it by a certain amount 
by applying various weighted functions (windows), such as Dirichlet, 
Hemming, Bartlett, Hanna, Blackman, and Kaiser windows. Currently, 
more than 50 types of windows are used. 

In many textbooks on digital signal processing, methods for reducing the 
unevenness of the amplitude-frequency response are considered. It was noted 
above that the bandpass filtering of the signal occurs during the wavelet 
transform. Currently, digital filtering is so widespread that the volume of 
literature devoted to it exceeds the volume of literature on any other field of 
digital signal processing. If the algorithms of the wavelet transform in the 
frequency domain allow us to obtain the ideal impulse characteristics of 
wavelets, then we can also obtain the ideal impulse characteristics of low-
pass, high-pass, notch, and blocking filters. Figure 4.4.10 shows the pulse 
response of the high-pass filter. 
 

 
Figure 4.4.10. Antisymmetric pulse response of the high-pass filter 

 
In the digital filter literature, such filters are called finite impulse 

response (FIR) filters. In filters with infinite impulse response (IIR), there 
is feedback, as in analog filters with feedback. IIR filters, in contrast to FIR 
filters, have a nonlinear phase-frequency response and are potentially 
unstable. They are used due to the fact that IIR filters can be implemented 
with a smaller number of calculations than FIR filters. 

Figure 4.4.11 shows the pulse response of the band-pass filter. 
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Fig. 4.4.11. Impulse response of the blocking filter 

 
Digital filters allow us to filter signals by narrowing the frequency range 

of the signal. Consider how the signal is cleared of noise, i.e. frequency 
filtering of the signal with a narrowing of the frequency range. In addition 
to the frequency filtering method, the accumulation method, the correlation 
method (time filtering), and the matched filtering are also used. In any 
communication channel, during transmission, noise 𝑢(𝑡) is superimposed 
on the signal 𝑥(𝑡), resulting in a distorted signal 
 

𝑦(𝑡) = 𝑥(𝑡) + 𝑢(𝑡) 
 
Signal power to noise power ratio 
 

𝑟 =
𝑃𝑥

𝑃𝑢
 

 
In order to detect a signal with a high probability, it is necessary to 

increase the ratio of the useful component of the signal to the noise. This 
transformation is called filtering. After leaving the filter, a signal is obtained 
 

𝑧(𝑡) = 𝑠(𝑡) + 𝑔(𝑡) 
 
The ratio of signal power to noise power after leaving the filter is 
 

𝑚 =
𝑃𝑠

𝑃𝑔
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The filtering task is to increase 𝑚 over 𝑟. One of these methods is frequency 
filtering of the signal. 

Let the signal be a sinusoid of a certain duration and frequency 
 

𝑥(𝑡) = 𝐴 sin(𝑤0𝑡) 
 
and the interference is "white noise". To isolate a useful signal of this type, 
bandpass filters are used that are tuned to the signal frequency. Real "white 
noise" has a uniform spectrum over a wide frequency range. At a finite 
frequency range, the noise power will be finite and the ratio of signal power 
to noise power 𝑟 will be finite. If the average noise power per unit frequency 
is 𝑃0 and the filter bandwidth is ∆𝑤, then the noise power at the filter output 
is 
 

𝑃𝑔 = 𝑃0∆𝑤 
 

The power of the useful component of the signal will be the same as 
before passing the filter, since the filter is tuned to the frequency of the 
signal. The ratio of signal power to noise power at the filter output is 
 

𝑚 =
𝑃𝑠

𝑃0∆𝑤
 

 
It follows from this formula that the smaller the passband of the filter 

∆𝑤, the greater the ratio of signal power to noise power 𝑚. The same 
principle is used to filter signals using wavelets, since the wavelet 
transform, as shown above, is the transmission of a signal through a 
bandpass filter. We will demonstrate this by using an example where the 
noise and signal levels are almost the same [31]. Figure 4.4.12 shows a 
graph of the dependence of 𝐻(𝑡) on the time of the pipeline noise and the 
word "стоп". The word "стоп" was pronounced at a distance of 10 meters 
from the microphone against the background of the noise of the conveyor. 
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Figure 4.4.12. The word "стоп" against the background of conveyor noise 

 
Before filtering, the graph shows that the noise level and the words are 

almost the same. After the wavelet transform and calculating the energy of 
the segments of the coefficients of the wavelet spectrum of this section, the 
energy of the word "стоп" is much higher, i.e. after filtering, the ratio of 
signal power to noise power has become much higher [31]. Figure 4.4.13 
shows a graph of the energy of the segments of the wavelet coefficients 
𝑊(2, 𝑏) of the word "стоп". Thus, the wavelet transform can be used on a 
par with digital filters. 
 

 
Figure 4.4.13. Energies of the segments of the wavelet coefficients of the word "стоп" 

 
Orthogonal symmetric and antisymmetric wavelets can also increase the 

spectral resolution. Resolution refers to the ability to separately measure 
(isolate) the spectral responses of two sinusoidal signals of equal amplitude 
and differing in frequency. A condition for the resolution of two spectral 
lines in optics is the Rayleigh criterion for the case when the instrumental 
contour has a diffraction shape. In some cases, two spectral peaks are 
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considered resolved if there is a point between these peaks where the second 
derivative is greater than zero (the line has a bulge looking down). 

In radio engineering, two spectral peaks are considered allowed if the 
gap between them has a value of at least 3 decibels, i.e. the gap is equal to 
70% of the maximum peak value. In optics, since light passes through 
spectral devices and diffraction occurs at the input slit, the Rayleigh 
criterion, according to which the minimum of one spectral line must 
coincide with the maximum of the other, leads to almost the same failure as 
in radio engineering. Let's compare the resolution of wavelets based on the 
derivatives of the Gaussian function and wavelets constructed in the 
frequency domain. The higher the order of the derivative of the Gaussian 
function, the narrower the spectrum at the same scale factor. The narrower 
the spectrum and the steeper the slope, the higher the resolution of the 
wavelet. Figure 4.4.14 shows the results of the wavelet transform of the sum 
of two sinusoids with frequencies slightly different from each other. 
 

 
a 

 

 
b 
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c 

Figure 4.4.14. A slice of the wavelet transform with derivatives of the Gaussian function 
 

Figure 4.4.14a uses the МНAТ-wavelet, i.e. the second derivative of the 
Gaussian function, Figure 4.4.14b is the third derivative of the Gaussian 
function, and Figure 4.4.14c is the fourth derivative of the Gaussian 
function. For the fourth-order derivative of the Gaussian function, the 
resolution is better. Figure 4.4.15 shows the result of a wavelet transform of 
the same sum of sinusoids using an orthogonal symmetric wavelet 
constructed in the frequency domain. The resolution of this wavelet is much 
higher than for wavelets based on derived Gaussian functions. 
 

 
Figure 4.4.15. A slice of a wavelet transform based on an orthogonal symmetric wavelet 
 

Figure 4.4.16 shows a cross-section of the wavelet transform for the sum 
of sinusoids with closer frequencies. For wavelets based on the derivatives 
of the Gaussian function, these sinusoids are not resolved at all, i.e. they are 
distinguished as a single sinusoid. 
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Figure 4.4.16. A slice of the wavelet transform based on an orthogonal symmetric 

wavelet 
 

Figure 4.4.17 shows one of the orthogonal symmetric wavelets used to 
study the sum of sinusoids with close frequencies. 
 

 
Figure 4.4.17. Orthogonal symmetric wavelet 

 
Figure 4.4.17 shows the fifth part of the wavelet. It can be seen that the 

number of zero moments of this wavelet is very large, and its spectrum is 
the same as in Figure 4.4.7. 

In the theory of the generalized Fourier transform, it is proved that the 
wavelets are orthogonal if the scalar transformation of these wavelets is 
zero. In the frequency domain, this statement corresponds to the fact that 
the product of the spectra of these vectors is zero, i.e. the spectra should not 
be superimposed on each other, as shown in Figure 4.4.18a. The spectra 
should be arranged as in Figure 4.4.18b. 
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a 

 

 
b 

Figure 4.4.18. Wavelet spectra of different scale coefficients 
 

If we call the wavelet spectra "windows", then these "windows" should 
be rectangular, having the same height but different widths. All other 
"windows" of a different shape form an uneven amplitude-frequency 
response in the set (sum). Figure 2.2.2.3 (Chapter 2) shows the frequency 
response of a set of MHAT wavelets, i.e. the wavelets obtained on the basis 
of the second derivative of the Gaussian function. These wavelets cannot be 
called orthogonal due to the fact that the set (sum) of wavelets is a block of 
filters with an uneven amplitude-frequency response. This is due to the fact 
that it is impossible to obtain a uniform amplitude-frequency response using 
the spectra shown in Fig. 1.4.3 and 1.4.4 (Chapter 1). Only the spectra 
similar to those shown in Figure 4.4.7 allow us to obtain a uniform 
amplitude-frequency response for the filter block. From this point of view, 
even orthogonal wavelets for discrete WT are not truly orthogonal, 
regardless of the fact that they are called orthogonal in the scientific 
literature. Their spectra have overlaps because they do not have ideal 
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frequency characteristics (Fig. 4.4.18a). They are also not symmetric, or 
antisymmetric functions. Accordingly, in the Proni transformation, the 
functions described by equation (1.10) do not give ideal amplitude-
frequency characteristics. Their spectra have overlaps and therefore the 
recovery error is greater than when using orthogonal wavelets constructed 
in the frequency domain. By constructing a wavelet or any function in the 
time domain, it is impossible to obtain an ideal amplitude-frequency 
response for such a function. 

In the course of signal studies, it was found that the forward and inverse 
wavelet transform in the frequency domain using orthogonal symmetric and 
antisymmetric wavelets can increase the calculation speed many times. 
Moreover, the speed of calculating the inverse WT increases even in 
comparison with using the FFT multiple, depending on which wavelet is 
used. Here are some ways to increase the speed of calculating the 
continuous wavelet transform. 

The first method is to use the parity or odd property of the wavelets, i.e. 
symmetry and antisymmetry. This method is presented in the forward and 
inverse WT algorithms. Most continuous wavelets are either even or odd 
functions. For even-numbered wavelets, the series consists of one cosine, 
and for odd-numbered ones of one sine. For even wavelets 

 
𝑏2(𝑛) = 0 

𝑐1(𝑛) = 𝑎1(𝑛)𝑎2(𝑛) 
𝑐2(𝑛) = 𝑏1(𝑛)𝑎2(𝑛) 

 
For odd wavelets 

𝑎2(𝑛) = 0 
𝑐1(𝑛) = 𝑏1(𝑛)𝑏2(𝑛) 

𝑐2(𝑛) = −𝑎1(𝑛)𝑏2(𝑛) 
 

The second method is the construction of wavelets in the frequency 
domain, i.e. there is no need to calculate the wavelets and the coefficients 
of the trigonometric series 𝑎2(𝑛), 𝑏2(𝑛) in the second step. 

The third method is to calculate the 𝑀 inverse Fourier transforms of the 
complex conjugate spectrum by the formula 
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𝑊(𝑎, 𝑏) = ∑(𝑐1(𝑘) + 𝑖𝑐2(𝑘))

𝑁−1

𝑘=0

exp (𝑖
2𝜋𝑛𝑘

𝑁
) 

 
only at certain intervals, i.e. for small scale coefficients at a smaller interval 
and for large scale coefficients at a larger interval. In the FFT algorithm, 
this is possible. Thus, the number of coefficients of the wavelet spectrum is 
equal to the number of samples of the original signal, i.e. the non-redundant 
WT. These wavelet coefficients can be used to compress the signal by first 
equating to zero values that are less than a certain threshold. By linear or 
nonlinear interpolation of these wavelet coefficients, it is easy to reconstruct 
the signal with the inverse WT. By nonlinear interpolation, the signal is 
reconstructed more accurately. Nonlinear interpolation uses the same 
wavelets as decomposition. The WT calculation time is reduced by a factor 
of 2.5 for a sample of 32768 samples. When processing images, the sample 
becomes even larger and, accordingly, the calculation time will decrease by 
an even greater value. Since the processing of color images requires 
obtaining a wavelet spectrum for three colors (RGB) along the horizontal 
and vertical axes, significant time savings are achieved. 

The fourth method is to use such a property for WT color images as color 
independence for small scale coefficients, i.e. the wavelet coefficients of 
red, blue and green have the same value. It is enough to calculate the wavelet 
spectrum for a single color. This property can be used for compression, 
since for small wavelet coefficients, triple compression is obtained without 
encoding. The fact that for small scale coefficients all three colors have the 
same wavelet coefficients, the human eye uses, in all probability, very well. 
There are 130 million rods that are responsible for dark vision in the human 
eye, and 7 million cones that are responsible for color vision. The cones are 
further apart than the rods, as the colors only appear at large scales. Since 
the intensity for small scale coefficients is less than for large ones, the 
radiation receivers should be more sensitive for small scales, i.e. the 
sensitivity of the rods should be higher than that of the cones. In fact, the 
rods feel a fainter light than the cones. 

The fifth method is to construct the wavelets in such a way that it is not 
necessary to calculate the normalizing coefficient during reconstruction. 
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The sixth method is the application of the fourth method in the 
reconstruction, so that the wavelet coefficients of one color can be used for 
all colors in 1, 2, 5, 6, 7, 8 steps in the inverse WT algorithm and in 
multiscale analysis. 

The seventh method is the construction of wavelets and preprocessing of 
the wavelet coefficients in such a way that it is possible to reconstruct a 
signal with the order of computational operations О(𝑁). This method allows 
one to reduce the signal reconstruction time by 1000 times compared to the 
algorithm using the FFT for sampling the signal of 32768 samples. 
Compared to direct numerical integration, more than 1,000,000 times. 
The construction of wavelets in the time domain does not allow to 
simultaneously improve the amplitude-frequency characteristics and reduce 
the conversion time. As a rule, improving the frequency characteristics of 
wavelets leads to an increase in the conversion time, since more equations 
need to be solved. The use of symmetric and antisymmetric orthogonal 
wavelets constructed in the frequency domain allows one to reduce the 
conversion time, and it also allows one to improve the phase and amplitude-
frequency characteristics. 

In addition to designing digital filters, using algorithms for the forward 
and inverse fast continuous wavelet transform, we can calculate derivatives 
of functions, integrals, and perform interpolation, extrapolation of 
functions. 
 
4.5 Conclusions 

 
1. Algorithms for compressing one- and two-dimensional signals in the 

frequency domain have been developed. 
 

2. An algorithm for numerical calculation of the fractal dimension is 
developed. 
 

3. An algorithm for calculating the average size of macro - and micro-
objects in the image obtained from a satellite or a microscope has 
been developed. 
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4. The results of multiple-scale image analysis in the frequency 
domain are compared with the results presented in the MatLab 
computer mathematics system. 
 

5. Orthogonal symmetric and antisymmetric wavelets with a scale 
factor of less than two are constructed. The WT calculation time is 
reduced many times. 

 
 
 



MAIN RESULTS 
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MAIN RESULTS 

 
The following main results are obtained: 
 
An algorithm for numerical calculation of direct continuous fast WT with 

an arbitrary choice of scaling coefficients is developed, which allows real-
time signal conversion. 

 
An algorithm for numerical calculation of the inverse fast WT is 

developed, which allows us to reconstruct a signal with a sample of 2 to the 
power of 𝑚 in 𝑚+ 1 steps. For signals with a sample of more than 1024 
samples, the Pearson correlation coefficient 𝑟 is 0.99. 

 
A comparison of the results of multiple-scale image analysis in the 

frequency domain with the result presented in the MatLab computer 
mathematics system shows that the developed algorithms allow for better 
signal analysis. 

 
Algorithms for numerical calculation of the forward and inverse fast 

WT with a scaling factor of less than two are developed, which allows the 
signal to be decomposed into a larger number of levels than for a scaling 
factor of two. 

 
In the time domain, it is impossible to construct wavelets with ideal 

amplitude-frequency characteristics due to the Gibbs phenomenon, and in 
the frequency domain, they can be presented in the work. Algorithms for 
designing digital filters of low, high frequencies, notch, and blocking 
filters have been developed. 

 
Algorithms for calculating the average size, standard deviation, and 

anisotropy of macro- and micro-objects in the image obtained from a 
satellite or a microscope are developed on the basis of wavelets 
constructed in the frequency domain. 

 
A set of computer programs has been developed that implements the 

proposed models and algorithms in real time. 
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