in materials science, control of technology and especially micro- and nano-sized 
objects. Considering the importance of multi-parameter diagnostics of objects with the 
help of SMM, the theory of reconstructing images of the distribution of various 
physical quantities, which characterize the various properties of objects, also requires 
substantial development. 

The numerical researches presented in the monograph clearly convince that SMM 

images have complex character, depending both on the type of the measured 
information extracted during scanning and on the influence of the physical parameters 
of the near-surface region of the object on its magnitude. Therefore, the interpretation 
of these images is complex. 

One of the possible decoding approaches, based on the formation of a set of 

measuring signals is approved, by creating images at two or more values of the gap 
between the probe tip and the object. Approbation of the approach is carried out by the 
example of a two-parameter image division into an image of the surface profile h

Z

 (x, 

y) and the dielectric permittivity ε (x, y). 

If we supplement such a set with a combined signal of the form ΔQ

S

-1

 (x, y), then 

the complex SMM image will be divided into three physical components ε (x, y), σ (x, 
y) and h

Z

 (x, y). It is stated that in order to obtain the true values of ε, tgδ and h

Z

, it is 

necessary to use analytically approximated characteristics of the transformation, the 
form of which was described by us in the previous paper. 

 

BIBLIOGRAPHICAL REFERENCES 

1.

 

Gao C. Quantitative scanning evanescent microwave microscopy and its 

applications in characterization of functional materials libraries / C. Gao, B. Hu, I 
Takeuchi, K.-S. Chang, X.-D. Xiang and G. Wang // Meas. Sci. Technol., 2005. – 
Vol.16. – №1. – p.248–260. 

2.

 

Tselev A. Broadband dielectric microwave microscopy on micron length 

scales / A. Tselev, S. M. Anlage, Z. Ma, and J. Melngailis // Review of Scientific 
Instruments, 2007. – Vol.78, pp. 044701-044701-7. 

3.

 

Weber J.C. A near-field scanning microwave microscope for characterization of 

inhomogeneous photovoltaics / J. C. Weber, J. B. Schager, N. A. Sanford, A. Imtiaz, T. 
M. Wallis, L. M. Mansfield, K. J. Coakley, K. A. Bertness, P. Kabos, V. M. Bright // 
Review of Scientific Instruments, 2012. – Vol.83. – №8.083702. 

4.

 

 Tselev A. Seeing through Walls at the Nanoscale: Microwave Microscopy of 

Enclosed Objects and Processes in Liquids / A. Tselev, J. Velmurugan, A. V. Ievlev, 
S. V. Kalinin, and A. Kolmakov, ACS Nano, 2016. – Vol.10. – №3. – p.3562– 3570. 

5.

 

Joseph C.H. Scanning microwave microscopy technique for nanoscale 

characterization of magnetic materials / C.H. Joseph, G.M. Sardi, S.S. Tuca, G. 

- 1558 -