To find the solution of the nonlinear initial-value problem (1), we consider a 

sequence of auxiliary linear initial-value problems and their continuous solutions. The 
characteristic start time is shown in Fig. 2. 

Mathematical problem (1a):  

x

m

c

dt

x

d

1

2

2

=

,  



1

,

0t

t

,

()

0

0=

x

 ,   

()

0

0

V

dt

dx

=

A solution to the problem (1a):   

()

t

m

c

c

m

V

t

x

=

1

1

0

sin

,  

1

1

2

c

m

t

=

Mathematical problem (2a):  

x

m

c

dt

x

d

2

2

2

=

 

,  

2

1

,t

t

t

,

()

1

0

1

c

m

V

t

x

=

 

,    

()

0

1

=

t

dt

dx

A solution to the problem (2a):  

()

(

)



=

1

2

1

0

cos

t

t

m

c

c

m

V

t

x

 

,   

()

(

)



=

1

2

1

2

0

sin

t

t

m

c

c

c

V

t

dt

dx

Find the instant of time 

2

t, when 

()

0

2

=

t

x

.  

We have the equation: 

()

(

)

0

cos

1

2

1

0

=



=

t

t

m

c

c

m

V

t

x

, and then we obtain 

2

1

2

2

c

m

t

t

+

=

 

.                (3) 

When

2

t

t

 we have an initial-value problem (3a):   

x

m

c

dt

x

d

3

2

2

=

4

2

,t

t

t

,   

()

0

2

=

t

x

()

1

1

2

0

2

V

c

c

V

t

dt

dx

=

=

.                (4) 

We have the solution to the problem (3a): 

                        

()

)

(

sin

2

3

3

1

t

t

m

c

c

m

V

t

x

=

,

).

(

cos

2

3

1

t

t

m

c

V

dt

dx

=

                    

(5) 

From condition 

()

0

4

=

t

x

 we find 

2

2

4

c

m

t

t

+

=

Mathematical problem (4a):  

x

m

c

dt

x

d

1

2

2

=

5

4

,t

t

t

()

0

4

=

t

x

()

1

4

V

t

dt

dx

=

Solution to the problem (4a):  

()

)

(

sin

4

1

1

1

t

t

m

c

c

m

V

t

x

=

 

)

(

cos

4

1

1

t

t

m

c

V

dt

dx

=

1

4

5

2

c

m

t

t

+

=

()

()

1

2

1

1

2

1

0

1

1

5

2

sin

c

c

t

x

c

c

c

m

V

c

m

V

t

x

=

=

=

We give a general formula for solving the general initial-value problem: 

- 1563 -