The cleaves micrographs provide only for a general idea of the overmolecular 

structure, since the cleavage nature is affected by the nature of crack germination in 
case of brittle fracture of the material. However, the observed differences for evenly 
filled metal- containing polymers, differing only in the nature of the particles, are so 
significant that they can be associated only with changes in the structure of the binder. 

X-ray diffraction studies have been conducted at the URS-50IM set. During the 

investigation MoKα - radiation (wavelength 0.710 Å) has been used. To reduce the 
relative level of background in the diffraction diagram the combination of Johann's 
focusing monochromator explored by Lang has been used, located in front of Brittany 
Bragg counter for filming polycrystalline samples "on reflection". In this case, 
diffractometer conditions of the resolution depend on the first monochronometer crack. 
The spectral range that is reflected by the monochromator does not depend on the 
crystal perfection, but is determined by slits and aberrations according to Johann 
method [12]. 

Qualitative X-ray analysis has been aimed at identifying crystalline phases based 

on the inherent values of interplanar distances d

HKL

, calculated by Wulff - Bragg 

formula (1) and correspondent relative intensities. 

Quantitative analysis has been used to determine the X-ray degree of crystallinity 

(DC) by the formula (2), the shortest interatomic distance R

0

 by means of Hegel 

formula (3) and the size of crystallites (coherent scattering zones) by Selyakov-
Scherrer formula (4). 

  2d

HKL

·sinθ=λ 

(1), 

R

0

=0,615λ / sinθ 

(3), 

  DC=ΣK·100% / ΣK+A 

(2), 

L=λ / β·cosθ 

(4), 

where d

HKL

 is interplanar distance; θ is angle of dispersion; λ is wavelength; DC 

is the X-ray degree of crystallinity; ΣK is the sum of areas of crystalline phase; А is 
the area of the amorphous phase; β is the FWHM (full-width at half-maximum height). 

The introduction of FM into the polymers leads to the emergence of a wide range 

of interactions (ranging from weak physical interactions to chemical ones) that occur 
at polymer - filler interface. The nature of these interactions depends significantly on 
the surface chemistry of the filler. Correspondence of different types of interactions 
that occur at the interface significantly affect the mechanical, physico-chemical and 
thermal properties of polymers and the filled system in general. Obviously, the surface 
chemistry of dispersed fillers is one of the most significant factors affecting the nature 
of the interaction at the interface and therefore the properties of the polymer [13]. 

Phenylone is an amorphous polymer that is obtained by means of 

polycondensation, a linear heterochain polar aromatic polyamide containing nitrogen 
and oxygen atoms in its main chain of macromolecules [14]. 

- 1619 -