Both СОР

c

 and СОР

s

(b) of heat pump based on composite ‘silica gel – Na

2

SO

4

’ 

are stated to be of the same magnitude during test period. Insignificant variation of 
СОР

s

(b) results from change of daily value of solar radiation.

 

 

CONCLUSION 

Operational parameters of close type devices or units for heat energy converters 

were studied.  The main factors affected efficiency coefficients of close-type heat 
storage units were considered. The area of improvement of operation of heat storage 
devices is suggested. Optimal operating parameters of exploiting processes for heat 
storage devices based on composite sorbent ‘silica gel – sodium sulphate’ are stated to 
be vapor-air flow rate speed of 0.2 – 0.6 m/s and relative humidity of 40 - 60% at 
heights of adsorbent layer 0.25 – 0.5 m. Optimal water mass supply is stated to be 
coincide with amount delivered with humid air to inlet of the adsorbent layer. 

Design of adsorptive heat pump based composite water adsorbent ‘silica gel – 

sodium sulphate’ is developed. Novel data for temperature variation in various pump 
units during its operational run are given. Coefficient of energy performance of 
adsorptive heat pump based on composite ‘silica gel – Na

2

SO

4

’ is stated to be 2.084.  

Power consumption is shown to be decreasing in 2,4 - 90 times versus 

decentralized heating systems based on solid fuel, gas and electric boilers when open-
type adsorptive heat storage device used.  

Perspectives of application of adsorptive heat conversion units are shown for heat 

supply systems. 

 

BIBLIOGRAPHICAL REFERENCES 

[1]

 

Scapino, L., Zondag, H. A., Van Bael, J., Diriken, J., Rindt, C. C. M. (2017). 

Sorption heat storage for long-term low-temperature applications: A review on the 
advancements at material and prototype scale, Applied Energy, Vol. 190, pp. 920–948.  

[2]

 

Gordeeva, L.G., Aristov, Yu.I. (2019). Adsorptive heat storage and 

amplification: new cycles and adsorbents, Energy, Vol. 167, pp. 440 – 453.  

[3]

 

Lanahan, M., Tabares-Velasco, P.C. Seasonal Thermal-Energy Storage 

(2017). A Critical Review on BTES Systems, Modeling, and System Design for Higher 
System Efficiency, Energies, Vol. 10, № 6, pp. 743 – 767. 

[4]

 

Lehmann,C, Beckert, S., Nonnen, T., Möllmer, J. Gläser. R., Kolditza, O., 

Nagel T. (2017). A comparison of heat storage densities of zeolite granulates predicted 
by the Dubinin-Polanyi theory to experimental measurements, Energy Procedia, Vol.   
105, pp.  4334 – 4339 

[5]

 

Nagel, T., Beckert, S., Böttcher, N., Gläser R., Kolditz, O. (2015). The 

impact of adsorbate density models on the simulation of water sorption on nanoporous 
materials for heat storage, Energy Procedia, Vol.  75, pp.  2106 – 2112 

- 516 -