Volumes of the potential and kinetic energy of the robot motion at different stages 

of displacement can be determined using Lagrangian equations of the second kind. The 
kinetic energy T

1

 of the robot's foot free from adhesion to the moving surface will be  

1

11

22

1

()

2

T

V

V

dm

xy

=+

,                                                 (1)                                                                   

where: V

x1

V

y1

 – the velocity projections on the coordinate axis 0xyz; m – the 

mass of the robot.  

Pedipulator of the robot, whose grips are engaged with the surface, performs a 

rotary motion with angular velocity

1

. The expression for the kinetic energy of a 

supporting leg of mass m

1

 and radius R can be obtained from expression (1) after 

integrating it, substituting the velocity of the translational motion of the robot  

V = 0 and the angular velocities of the pedipulators

21



=

:  

2

2

1

21

()

6

mR

T

=

 .                                                        (2) 

Thus, the movement of the robot at each second half of the cycle occurs due to 

the energy accumulated at each first half of the travel step. This allows 40% ... 45% to 
reduce energy costs for the movement of the robot and to direct the resulting energy 
reserve for the execution of technological operations. 

Pedipulators work with elastic elements (Figure 3, pos.4), which perform the 

function of accumulation of potential energy during the first half of the cycle of 
displacement.  

 

Figure 4. The effect of the elastic element j (N/m) on the work performed 

in the step β

1

> 45

o

 of the robot movement 

Source: developed by the authors 

 
The main characteristic of elastic elements is their rigidity j – parameter, which 

determines the force of compression of these elements, and hence the value of the 
accumulated potential energy in the first half of the step of the pedipulator. In Fig. 2 

- 541 -