shows the dependence of the variation of work "A" on the stiffness of the elastic 

element j (N/m) and the forces of weight in the second stage 

o

1,2

 45



 of displacement, 

that is, during the transformation of the potential energy into the kinetic energy of the 
robot's motion. At the second stage of displacement 

0

0

1,2

45

90



 drive the of 

pedipulator is turned off to save energy resources of the robot, and it moves only due 
to kinetic energy. Analysis of these graphs shows that to increase the kinetic energy of 
the robot movement, it is advisable to increase the rigidity, despite the fact that in this 
case the counteraction to the drive increases in the first half of the step, that is, the 
efficiency of the drive decreases. However, this negative manifestation can be 
compensated for by an increase in the transmission ratio (see item 10, Figure 3) of 
pedipulators.                                                                                               

The second principle, as noted above, involves the integration of displacement 

drives [17] with the aim of reducing them, and hence of reducing the mass of the robot. 
It is known that in the Cartesian space we have six degrees of freedom – three 
translational movements and three rotational, each of which according to the classical 
solutions corresponds to an autonomous drive. The method of Fig. 5 – technical 
implementation of this principle eliminates the need for drives for each of the 
coordinate axes. To do this, the robot is equipped with flexible running mechanisms 2 
mounted on the body 1. Each pair of legs of the robot through the transmissions 3 is 
provided with electric drives 4. The grippers 5 keep the robot on the surface moving, 
and the rotary actuators 6 change the position of the grippers relative to the 
displacement surface. The robot platform has a power supply unit 7, a hydraulic or 
pneumatic valve unit 8 and a gas or liquid pressure generator and a controller 9 for 
controlling the robot. Due to the fact that each foot of the robot is made in the form of 
a compressed set of hemispherical rings inside which corrugated pipes are placed under 
different pressures, the robot has the ability to work in different coordinate systems: 
rectangular Cartesian, spherical and cylindrical without additional drives on each axis 
of coordinates. In each leg of the robot there are four corrugated pipes. Two pipelines 
with pressure p

1

 p

2

 are placed in a vertical plane and two other pipelines – in a 

horizontal plane with pressure p

3

 and p

4

. The pressures in flexible pipes are created by 

a pneumatic or hydraulic pressure generator.  

Due to the action of these pressures, forces appear that, while bending the robot's 

leg, orient the robot in the technological space: 

 

2

2

2

2

1

1

2

2

3

3

4

4

;

;

,

4

4

4

4

d

d

d

d

F

p

F

p

F

p

F

p

=

=

=

=

                            (3)   

                              

- 542 -